Do you want to publish a course? Click here

Future Prospects: Deep Imaging of Galaxy Outskirts using Telescopes Large and Small

182   0   0.0 ( 0 )
 Added by Roberto Abraham
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about forty years. Recent technical advances have at last begun to erode the barriers preventing progress. In this Chapter we describe the technical challenges to low surface brightness imaging, describe some solutions, and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.



rate research

Read More

The next generation of giant-segmented mirror telescopes ($>$ 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from $Z$ band (0.9 $mu$m) to $K$ band (2.2 $mu$m). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of $sim10^4$ msun to the most massive black holes known today of $>10^{10}$ $M_odot$. We find that IRIS will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of $sim8000$ will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in SDSS DR7, we find that over $10^5$ massive black holes will be observable at distances between $0.005 < z < 0.18$ with the estimated sensitivity and angular resolution provided by access to $Z$-band (0.9 $mu$m) spectroscopy from IRIS and the TMT adaptive optics system. (Abridged)
(Abridged) Typically large telescope construction and operation costs scale up faster than their collecting area. This slows scientific progress, making it expensive and complicated to increase telescope size. A metric that represents the capability of an imaging survey telescopes, and that captures a wide range of science objectives, is the telescope grasp -- the amount of volume of space in which a standard candle is detectable per unit time. We provide an analytic expression for the grasp, and also show that in the background-dominated noise limit, the optimal exposure time is three times the dead time. We introduce a related metric we call the information-content grasp, which summarizes the variance of all sources observed by the telescope per unit time. For seeing-dominated sky surveys, in terms of grasp, etendue, or collecting-area optimization, recent technological advancements make it more cost effective to construct multiple small telescopes rather than a single large telescope with a similar grasp or etendue. Among these key advancements are the availability of large-format back-side illuminated CMOS detectors with <4 micron pixels, well suited to sample standard seeing conditions given typical focal lengths of small fast telescopes. We also discuss the possible use of multiple small telescopes for spectroscopy. We argue that if all the obstacles to implementing cost-effective wide-field imaging and multi-object spectrographs using multiple small telescopes are removed, then the motivation to build new single large-aperture (>1m) visible-light telescopes which are seeing-dominated, will be weakened. These ideas have led to the concept of the, currently under construction, Large-Array Survey Telescope (LAST).
The Low Frequency Array (LOFAR) is under construction in the Netherlands and in several surrounding European countries. In this contribution, we describe the layout and design of the telescope, with a particular emphasis on the imaging characteristics of the array when used in its standard imaging mode. After briefly reviewing the calibration and imaging software used for LOFAR image processing, we show some recent results from the ongoing imaging commissioning efforts. We conclude by summarizing future prospects for the use of LOFAR in observing the little-explored low frequency Universe.
153 - K. Liu , R. P. Eatough , N. Wex 2014
The anticipated discovery of a pulsar in orbit with a black hole is expected to provide a unique laboratory for black hole physics and gravity. In this context, the next generation of radio telescopes, like the Five-hundred-metre Aperture Spherical radio Telescope (FAST) and the Square Kilometre Array (SKA), with their unprecedented sensitivity, will play a key role. In this paper, we investigate the capability of future radio telescopes to probe the spacetime of a black hole and test gravity theories, by timing a pulsar orbiting a stellar-mass-black-hole (SBH). Based on mock data simulations, we show that a few years of timing observations of a sufficiently compact pulsar-SBH (PSR-SBH) system with future radio telescopes would allow precise measurements of the black hole mass and spin. A measurement precision of one per cent can be expected for the spin. Measuring the quadrupole moment of the black hole, needed to test GRs no-hair theorem, requires extreme system configurations with compact orbits and a large SBH mass. Additionally, we show that a PSR-SBH system can lead to greatly improved constraints on alternative gravity theories even if they predict black holes (practically) identical to GRs. This is demonstrated for a specific class of scalar-tensor theories. Finally, we investigate the requirements for searching for PSR-SBH systems. It is shown that the high sensitivity of the next generation of radio telescopes is key for discovering compact PSR-SBH systems, as it will allow for sufficiently short survey integration times.
43 - Silvano Molendi 2004
A solid observational characterization of cluster regions around the virial radius would allow us to improve considerably our understanding of the physics of galaxy clusters as a whole: sadly current and planned experiments will not allow us to study these regions. Unbeknownst to most but not all, the development of an experiment sensitive to cluster outer regions could be achieved with currently available technology, with no need for breakthroughs. Amongst the major factors that will decide whether and when such an experiment will be flown are the awareness of the cluster community of the importance of such a mission and its determination in supporting it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا