Do you want to publish a course? Click here

Leggett-Garg tests of macro-realism for multi-particle systems including double-well Bose-Einstein condensates

274   0   0.0 ( 0 )
 Added by Margaret Reid
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct quantifiable generalisations of Leggett-Garg tests for macro/ mesoscopic realism and noninvasive measurability that apply when not all outcomes of measurement can be identified as arising from one of two macroscopically distinguishable states. We show how quantum mechanics predicts a negation of the LG premises for proposals involving ideal-negative-result, weak and quantum non-demolition measurements on dynamical entangled systems, as might be realised with two-well Bose-Einstein condensates, path-entangled NOON states and atom interferometers.



rate research

Read More

We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
219 - Y. P. Huang , M. G. Moore 2007
This paper has been withdrawn. It is based on numerical results limited by computing resources to N=3000 atoms. Using a newly understood geometric method we find that the observed scaling with N saturates at around N=7000 or even higher. In light of this new finding we withdraw the paper and will submit a revised manuscript reflecting our new understanding.
122 - Y. Shin , M. Saba , A. Schirotzek 2003
Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations.
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) either on the cavity or on the nanomechanical system itself, the Leggett-Garg inequality is violated. We argue that only measurements on the mechanical system itself give a truly unambigous violation of the Leggett-Garg inequality for the mechanical system. In this case, a violation of the Leggett-Garg inequality indicates physics beyond that of macroscopic realism is occurring in the mechanical system. Finally, we discuss the difficulties in using unbound non-dichotomic observables with the Leggett-Garg inequality.
111 - Y. Shin , M. Saba , T.A. Pasquini 2003
A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein condensates coherently split by deforming an optical single-well potential into a double-well potential. The relative phase between the two condensates was determined from the spatial phase of the matter wave interference pattern formed upon releasing the condensates from the separated potential wells. Coherent phase evolution was observed for condensates held separated by 13 $mu$m for up to 5 ms and was controlled by applying ac Stark shift potentials to either of the two separated condensates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا