No Arabic abstract
We report on an investigation of the redistribution of interlayer coherence in the trilayer cuprate Bi2Sr2Ca2Cu3O10. The experiment is performed under the same apical-oxygen phonon excitation discussed in the past for the bilayer cuprate YBa2Cu3O6.5. In Bi2Sr2Ca2Cu3O10, we observe a similar spectral weight loss at the transverse plasma mode resonance seen in YBa2Cu3O6.5. However, this feature is not accompanied by light-enhanced interlayer coherence that was seen in YBa2Cu3O6+x, for which the transverse plasma mode is observed at equilibrium even in the normal state. These new observations offer new experimental perspective in the context of the physics of light-enhanced interlayer coupling in various cuprates.
We present microwave and infrared measurements on SmLa0.8Sr0.2CuO4-d, which are direct evidence for the existence of a transverse optical plasma mode, observed as a peak in the c-axis optical conductivity. This mode appears as a consequence of the existence of two different intrinsic Josephson couplings between the CuO2 layers, one with a Sm2O2 block layer, and the other one with a (La,Sr)O block layer. From the frequencies and the intensities of the collective modes we determine the value of the compressibility of the two dimensional electron fluid in the copper oxygen planes.
We review some previous studies concerning the intra-bilayer Josephson plasmons and present new ellipsometric data of the c-axis infrared response of almost optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8}. The c-axis conductivity of this compound exhibits the same kind of anomalies as that of underdoped YBa_{2}Cu_{3}O_{7-delta}. We analyze these anomalies in detail and show that they can be explained within a model involving the intra-bilayer Josephson effect and variations of the electric field inside the unit cell. The Josephson coupling energies of different bilayer compounds obtained from the optical data are compared with the condensation energies and it is shown that there is a reasonable agreement between the values of the two quantities. We argue that the Josephson coupling energy, as determined by the frequency of the intra-bilayer Josephson plasmon, represents a reasonable estimate of the change of the effective c-axis kinetic energy upon entering the superconducting state. It is further explained that this is not the case for the estimate based on the use of the simplest ``tight-binding sum rule. We discuss possible interpretations of the remarkable agreement between the Josephson coupling energies and the condensation energies. The most plausible interpretation is that the interlayer tunneling of the Cooper pairs provides the dominant contribution to the condensation energy of the bilayer compounds; in other words that the condensation energy of these compounds can be accounted for by the interlayer tunneling theory. We suggest an extension of this theory, which may also explain the high values of T_{c} in the single layer compounds Tl_{2}Ba_{2}CuO_{6} and HgBa_{2}CuO_{4}, and we make several experimentally verifiable predictions.
We study the Josephson current through a ferromagnetic trilayer, both in the diffusive and clean limits. For colinear (parallel or antiparallel) magnetizations in the layers, the Josephson current is small due to short range proximity effect in superconductor/ferromagnet structures. For non colinear magnetizations, we determine the conditions for the Josephson current to be dominated by another contribution originating from long range triplet proximity effect.
We use scanning tunneling microscopy to investigate Bi2Sr2Ca2Cu3O10+{delta} trilayer cuprates from the optimally doped to overdoped regime. We find that the two distinct superconducting gaps from the inner and outer CuO2 planes both decrease rapidly with doping, in sharp contrast to the nearly constant Tc. Spectroscopic imaging reveals the absence of quasiparticle interference in the antinodal region of overdoped samples, showing an opposite trend to that in single- and double-layer compounds. We propose that the existence of two types of inequivalent CuO2 planes and the intricate interaction between them are responsible for these highly anomalous observations in trilayer cuprates.
We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co$_{68}$B$_{32}$/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co$_{68}$B$_{32}$ interfaces, allowing us to study barriers with ultra-thin Co$_{68}$B$_{32}$. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co$_{68}$B$_{32}$ strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to $pi$. The multiple oscillations in the thickness range $0.2~leqslant~d_text{CoB}~leqslant~1.4$~nm suggests that we have access to the first zero-$pi$ and $pi$-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions.