No Arabic abstract
We present microwave and infrared measurements on SmLa0.8Sr0.2CuO4-d, which are direct evidence for the existence of a transverse optical plasma mode, observed as a peak in the c-axis optical conductivity. This mode appears as a consequence of the existence of two different intrinsic Josephson couplings between the CuO2 layers, one with a Sm2O2 block layer, and the other one with a (La,Sr)O block layer. From the frequencies and the intensities of the collective modes we determine the value of the compressibility of the two dimensional electron fluid in the copper oxygen planes.
We use angle resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the antiferromagnetic Mott insulator at zero doping and the superconducting state at larger dopings in Bi_2Sr_2CaCu_2O_{8+delta}. We find that this state is a nodal liquid whose excitation gap becomes zero only at points in momentum space. Despite exhibiting a resistivity characteristic of an insulator and the absence of coherent quasiparticle peaks, this material has the same gap structure as the d-wave superconductor. We observe a smooth evolution of the spectrum across the insulator-to-superconductor transition, which suggests that high temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.
We report on an investigation of the redistribution of interlayer coherence in the trilayer cuprate Bi2Sr2Ca2Cu3O10. The experiment is performed under the same apical-oxygen phonon excitation discussed in the past for the bilayer cuprate YBa2Cu3O6.5. In Bi2Sr2Ca2Cu3O10, we observe a similar spectral weight loss at the transverse plasma mode resonance seen in YBa2Cu3O6.5. However, this feature is not accompanied by light-enhanced interlayer coherence that was seen in YBa2Cu3O6+x, for which the transverse plasma mode is observed at equilibrium even in the normal state. These new observations offer new experimental perspective in the context of the physics of light-enhanced interlayer coupling in various cuprates.
In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ and BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$]. Intriguingly, we found that the suppression of the low-frequency optical conductivity and spectral weight transfer appear at a temperature $T^{ast}$ much higher than the SDW transition temperature $T_{SDW}$. Since this behavior has the same optical feature and energy scale as the SDW order, we attribute it to SDW fluctuations. Furthermore, $T^{ast}$ is suppressed with doping, closely following the doping dependence of the nematic fluctuations detected by other techniques. These results suggest that the magnetic and nematic orders have an intimate relationship, in favor of the magnetic-fluctuation-driven nematicity scenario in iron-based superconductors.
We report the ultra-fast optical response of quasi-particles (QPs) in both the pseudogap (PG) and superconducting (SC) states of underdoped (UD) Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) single crystal measured with the time-resolved pump-probe technique. At a probe energy $hbaromega_{pr}$=1.55 eV, it is found that the reflectivity change $Delta$R/R changes its sign at exactly $T_{c}$, which allows the direct separation of the charge dynamics of PG and SC QPs. Further systematic investigations indicate that the transient signals associated with PG and SC QPs depend on the probe beam energy and polarization. By tuning them below $T_{c}$ two distinct components can be detected simultaneously, providing evidence for the coexistence of PG and SC QPs.
We present studies of the photoexcited quasiparticle dynamics in Tl$_{2}$Ba$_{2}$Ca$_{2}$Cu$_{3}$O$_{y}$ (Tl-2223) using femtosecond optical techniques. Deep into the superconducting state (below 40 K), a dramatic change occurs in the temporal dynamics associated with photoexcited quasiparticles rejoining the condensate. This is suggestive of entry into a coexistence phase which, as our analysis reveals, opens a gap in the density of states (in addition to the superconducting gap), and furthermore, competes with superconductivity resulting in a depression of the superconducting gap.