Do you want to publish a course? Click here

Excess entropy production in quantum system: Quantum master equation approach

62   0   0.0 ( 0 )
 Added by Satoshi Nakajima
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by $ln breve{rho}_0$ and $rho_0$ where $rho_0$ is the instantaneous steady state of the QME and $breve{rho}_0$ is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.



rate research

Read More

We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation functions of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.
We propose a nonperturbative quantum dissipation theory, in term of hierarchical quantum master equation. It may be used with a great degree of confidence to various dynamics systems in condensed phases. The theoretical development is rooted in an improved semiclassical treatment of Drude bath, beyond the conventional high temperature approximations. It leads to the new theory a simple modification but important improvement over the conventional stochastic Liouville equation theory, without extra numerical cost. Its broad range of validity and applicability is extensively demonstrated with two--level electron transfer model systems, where the new theory can be considered as the modified Zusman equation. We also present a criterion, which depends only on the system--bath coupling strength, characteristic bath memory time, and temperature, to estimate the performance of the hierarchical quantum master equation.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum field theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulations, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production saturates in isolated quantum systems under unitary dynamics. First, we rigorously prove the saturation of the entropy production in the long time regime, where a total system can be in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis (ETH), which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا