Do you want to publish a course? Click here

Exotic Electroweak Signals in Twin Higgs

67   0   0.0 ( 0 )
 Added by Ennio Salvioni
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The most promising collider search strategy, based on rare Higgs decays, is nevertheless not effective in significant regions of the parameter space of the low energy theory. This underlines the importance of phenomenological studies on ultraviolet completions of the Twin Higgs model, which must lie at a scale lower than 5-10 TeV. We pursue this course in the context of non-supersymmetric completions, focusing on exotic fermions that carry SM electroweak and twin color charges, as well as on exotic vectors that transform as the bi-fundamental of the electroweak or color groups. Both $Z_2$-preserving and $Z_2$-breaking mass spectra are considered for the exotic fermions. In the former case they must be heavier than $sim 1$ TeV, but can still be sizably produced in the decays of the color bi-fundamental vector. In the $Z_2$-breaking scenario, the exotic fermions can have masses in the few hundred GeV range without significantly increasing the fine-tuning. Once pair-produced through the electroweak interactions, they naturally form bound states held together by the twin color force, which subsequently annihilate back to SM particles. The associated resonance signals are discussed in detail. We also outline the phenomenology of the electroweak bi-fundamental vectors, some of which mix with the SM $W$ and $Z$ and can therefore be singly produced in hadron collisions.



rate research

Read More

The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and small mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.
Dark matter candidates arise naturally in many models that address the hierarchy problem. In the fraternal twin Higgs model which could explain the absence of the new physics signals at the Large Hadron Collider (LHC), there are several viable dark matter candidates. In this paper we study the twin neutrino in the mass range $sim$ 0.1--10 GeV as the dark matter. The thermal relic density is determined by the interplay of several annihilation and scattering processes between the twin neutrino, twin tau, and twin photon, depending on the order of the freeze-out temperatures of these processes. Besides the common coannihilation scenario where the relic density is controlled by the twin tau annihilation, it can realize the recently discovered coscattering phase if the scattering of the twin neutrino into the twin tau freezes out earlier than the twin tau annihilation. We also provide a method to calculate the thermal relic density in the intermediate regime where both coannihilation and coscattering processes contribute to the determination of the dark matter density. We show that the right amount of dark matter can be obtained in various scenarios in different regions of the parameter space. The current experimental constraints and future probes into the parameter space from direct detections, cosmological and astrophysical bounds, dark photon searches, and displaced decays at colliders, are discussed.
Conditions for strong first-order phase transition and generation of observable gravitational wave (GW) signals are very restrictive to the profile of the Higgs potential. Working in the minimal extension of the SM with a new gauge singlet real scalar, we show that the production of signals relevant for future GW experiments, such as LISA, can favor depleted resonant and non-resonant di-Higgs rates at colliders for phenomenologically relevant regimes of scalar mixing angles and masses for the heavy scalar. We perform a comprehensive study on the emergence of these di-Higgs blind spot configurations in GWs and also show that di-boson channels, $ZZ$ and $WW$, can restore the phenomenological complementarities between GW and collider experiments in these parameter space regimes.
We consider the collider signals arising from kinetic mixing between the hypercharge gauge boson of the Standard Model and its twin counterpart in the Mirror Twin Higgs model, in the framework in which the twin photon is massive. Through the mixing, the Standard Model fermions acquire charges under the mirror photon and the mirror Z boson. We determine the current experimental bounds on this scenario, and show that the mixing can be large enough to discover both the twin photon and the twin Z at the LHC, or at a future 100 TeV hadron collider, with dilepton resonances being a particularly conspicuous signal. We show that, in simple models, measuring the masses of both the mirror photon and mirror Z, along with the corresponding event rates in the dilepton channel, overdetermines the system, and can be used to test these theories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا