Do you want to publish a course? Click here

Exotic Higgs Decays and the Electroweak Phase Transition

213   0   0.0 ( 0 )
 Added by Jonathan Kozaczuk
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and small mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.



rate research

Read More

The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The most promising collider search strategy, based on rare Higgs decays, is nevertheless not effective in significant regions of the parameter space of the low energy theory. This underlines the importance of phenomenological studies on ultraviolet completions of the Twin Higgs model, which must lie at a scale lower than 5-10 TeV. We pursue this course in the context of non-supersymmetric completions, focusing on exotic fermions that carry SM electroweak and twin color charges, as well as on exotic vectors that transform as the bi-fundamental of the electroweak or color groups. Both $Z_2$-preserving and $Z_2$-breaking mass spectra are considered for the exotic fermions. In the former case they must be heavier than $sim 1$ TeV, but can still be sizably produced in the decays of the color bi-fundamental vector. In the $Z_2$-breaking scenario, the exotic fermions can have masses in the few hundred GeV range without significantly increasing the fine-tuning. Once pair-produced through the electroweak interactions, they naturally form bound states held together by the twin color force, which subsequently annihilate back to SM particles. The associated resonance signals are discussed in detail. We also outline the phenomenology of the electroweak bi-fundamental vectors, some of which mix with the SM $W$ and $Z$ and can therefore be singly produced in hadron collisions.
Higgs sector extensions beyond the Standard Model (BSM) provide additional sources of CP violation and further scalar states that help to trigger a strong first order electroweak phase transition (SFOEWPT) required to generate the observed baryon asymmetry of the Universe through electroweak baryogenesis. We investigate the CP-violating 2-Higgs-Doublet Model (C2HDM) and the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) with respect to their potential to generate an SFOEWPT while being compatible with all relevant and recent theoretical and experimental constraints. The implications of an SFOEWPT on the collider phenomenology of the two models are analysed in detail in particular with respect to Higgs pair production. We provide benchmark points for parameter points that are compatible with an SFOEWPT and provide distinct di-Higgs signatures.
We show that weak scale vector-like fermions with order one couplings to the Higgs can lead to a novel mechanism for a strongly first-order electroweak phase transition (EWPhT), through their tendency to drive the Higgs quartic coupling negative. These same fermions could also enhance the loop-induced branching fraction of the Higgs into two photons, as suggested by the recent discovery of a ~125 GeV Higgs-like state at the CERN Large Hadron Collider (LHC). Our results suggest that measurements of the diphoton decay rate of the Higgs and its self coupling, at the LHC or perhaps at a future lepton collider, could probe the EWPhT in the early Universe, with significant implications for the viability of electroweak baryogenesis scenarios.
Light axions can potentially leave a cosmic background, just like neutrinos. We complete the study of thermal axion production across the electroweak scale by providing a smooth and continuous treatment through the two phases. Focusing on both flavor conserving and violating couplings to third generation quarks, we compute the amount of axions produced via scatterings and decays of thermal bath particles. We perform a model independent analysis in terms of axion effective couplings, and we also make predictions for specific microscopic QCD axion scenarios. This observable effect, parameterized as it is conventional by an effective number of additional neutrinos, is above the $1sigma$ sensitivity of future CMB-S4 surveys. Moreover, if one assumes no large hierarchies among dimensionless axion couplings to standard model particles, future axion helioscopes will provide a complementary probe for the parameter region we study.
The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doublet-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars $H_0$, $A_0$ and $H^{pm}$ that signal such a phase transition, showing that the decay $A_0 rightarrow H_0 Z$ at the LHC and a sizable deviation in the Higgs self-coupling $lambda_{hhh}$ from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا