Do you want to publish a course? Click here

Theoretical considerations about heavy-ion fusion in potential scattering

110   0   0.0 ( 0 )
 Added by Mahir S. Hussein
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We carefully compare the one-dimensional WKB barrier tunneling model, and the one-channel Schodinger equation with a complex optical potential calculation of heavy-ion fusion, for a light and a heavy system. It is found that the major difference between the two approaches occurs around the critical energy, above which the effective potential for the grazing angular momentum ceases to exhibit a pocket. The value of this critical energy is shown to be strongly dependent on the nuclear potential at short distances, on the inside region of the Coulomb barrier, and this dependence is much more important for heavy systems. Therefore the nuclear fusion process is expected to provide information on the nuclear potential in this inner region. We compare calculations with available data to show that the results are consistent with this expectation.



rate research

Read More

In this paper we revisit the one-dimensional tunnelling problem. We consider different approximations for the transmission through the Coulomb barrier in heavy ion collisions at near-barrier energies. First, we discuss approximations of the barrier shape by functional forms where the transmission coefficient is known analytically. Then, we consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of the different approximations considered in this paper by comparing their predictions for transmission coefficients and cross sections of three heavy ion systems with the corresponding quantum mechanical results.
73 - K. Hagino , N. Rowley , 2015
The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as $^{12}$C+$^{12}$C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of $^{58}$Ni+$^{58}$Ni and $^{40}$Ca+$^{58}$Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.
346 - A. J. Toubiana , L. F. Canto , 2016
In this paper we revisit the one-dimensional tunneling problem. We consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of this approximation by comparing their predictions for the cross section and for the barrier distribution with the corresponding quantum mechanical results. We find that the extended Kembles approximation reproduces the results of quantum mechanics with great accuracy.
The anisotropy of angular distributions of emitted nucleons and light charged particles for the asymmetric reaction system, $^{40}$Ar+$^{197}$Au, at b=6fm and $E_{beam}$=35, 50 and 100MeV/u, are investigated by using the Improved Quantum Molecular Dynamics model. The competition between the symmetry potential and Coulomb potential shows large impacts on the nucleons and light charged particles emission in projectile and target region. As a result of this competition, the angular distribution anisotropy of coalescence invariant Y(n)/Y(p) ratio at forward regions shows sensitivity to the stiffness of symmetry energy as well as the value of Y(n)/Y(p). This observable can be further checked against experimental data to understand the reaction mechanism and to extract information about the symmetry energy at subsaturation densities.
The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A = 200 - 300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the $^{12}$C + $^{12}$C system in the energy range of E/A = 100 - 400 MeV. The tensor force contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decomposition of the elastic-scattering amplitudes clarifies the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements of the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا