No Arabic abstract
Many of the observed spin--orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin--orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few au. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts---separated at the location of the planet---that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin--orbit angle also exhibits a secular growth in this case---driven by ongoing mass depletion from the disk---that becomes significant when the inner disks angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including to the interpretation of the alignment properties of debris disks.
We study the interaction between massive planets and a gas disc with a mass in the range expected for protoplanetary discs. We use SPH simulations to study the orbital evolution of a massive planet as well as the dynamical response of the disc for planet masses between 1 and $6 rmn{M_J}$ and the full range of initial relative orbital inclinations. Gap formation can occur for planets in inclined orbits. For given planet mass, a threshold relative orbital inclination exists under which a gap forms. At high relative inclinations, the inclination decay rate increases for increasing planet mass and decreasing initial relative inclination. For an initial semi-major axis of 5 AU and relative inclination of $i_0=80^circ,$ the times required for the inclination to decay by $10^circ$ is $sim10^{6} rmn{yr}$ and $sim10^{5} rmn{yr}$ for $1 rmn{M_J}$ and $6 rmn{M_J}$. Planets on inclined orbits warp the disc by an extent that is negligible for $1 rmn{M_J}$ but increases with increasing mass becoming quite significant for a planet of mass $6 rmn{M_J}$. We also find a solid body precession of both the total disc angular momentum vector and the planet orbital momentum vector about the total angular momentum vector. Our results illustrate that the influence of an inclined massive planet on a protoplanetary disc can lead to significant changes of the disc structure and orientation which can in turn affect the orbital evolution of the planet significantly.
The so-called dipper stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planets orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disks angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with cold Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.
Protoplanetary disks with large inner dust cavities are thought to host massive planetary or substellar companions. These disks show asymmetries and rings in the millimeter continuum, caused by dust trapping in pressure bumps, and potentially vortices or horseshoes. The origin of the asymmetries and their diversity remains unclear. We present a comprehensive study of 16 disks for which the gas surface density profile has been constrained by CO isotopologue data. We compare the azimuthal extents of the dust continuum profiles with the local gas surface density in each disk, and find that the asymmetries correspond to higher Stokes numbers or low gas surface density. We discuss which asymmetric structures can be explained by a horseshoe, a vortex or spiral density waves. Second, we reassess the gas gap radii from the $^{13}$CO maps, which are about a factor 2 smaller than the dust ring radii, suggesting that companions in these disks are in the brown dwarf mass regime ($sim 15-50 M_{rm Jup}$) or in the Super-Jovian mass regime ($sim 3-15 M_{rm Jup}$) on eccentric orbits. This is consistent with the estimates from contrast curves on companion mass limits. These curves rule out (sub)stellar companions ($q>$0.05) for the majority of the sample at the gap location, but it remains possible at even smaller radii. Third, we find that spiral arms in scattered light images are primarily detected around high luminosity stars with disks with wide gaps, which can be understood by the dependence of the spiral arm pitch angle on disk temperature and companion mass.
We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU~Orionis-type stars. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close encounter with an intruder star were modeled using the numerical hydrodynamics code FEOSAD. Both the gas and dust dynamics were taken into account, including dust growth and mutual friction between the gas and dust components. Only plane-of-the-disk encounters were considered. Ejected clumps produce a unique type of tail that is characterized by a bow-shock shape. Such tails originate from the supersonic motion of ejected clumps through the dense envelope that often surrounds young gravitationally unstable protostellar disks. The ejected clumps either sit at the head of the tail-like structure or disperse if their mass is insufficient to withstand the head wind of the envelope. On the other hand, close encounters with quiescent protoplanetary disks produce three types of the tail-like structure; we define these as pre-collisional, post-collisional, and spiral tails. These tails can in principle be distinguished from one another by particular features of the gas and dust flow in and around them. We find that the brown-dwarf-mass intruders do not capture circumintruder disks during the encounter, while the subsolar-mass intruders can acquire appreciable circumintruder disks with elevated dust-to-gas ratios, which can ease their observational detection. However, this is true only for prograde collisions; the retrograde intruders fail to collect appreciable amounts of gas or dust from the disk of the target. The predicted mass of dust in the model tail-like structures is higher than what was inferred for similar structures in SU~Aur, FU~Ori, and Z~CMa, making their observational detection feasible. Abridged.