Do you want to publish a course? Click here

Interaction between massive planets on inclined orbits and circumstellar discs

170   0   0.0 ( 0 )
 Added by Meng Xiang-Gruess
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the interaction between massive planets and a gas disc with a mass in the range expected for protoplanetary discs. We use SPH simulations to study the orbital evolution of a massive planet as well as the dynamical response of the disc for planet masses between 1 and $6 rmn{M_J}$ and the full range of initial relative orbital inclinations. Gap formation can occur for planets in inclined orbits. For given planet mass, a threshold relative orbital inclination exists under which a gap forms. At high relative inclinations, the inclination decay rate increases for increasing planet mass and decreasing initial relative inclination. For an initial semi-major axis of 5 AU and relative inclination of $i_0=80^circ,$ the times required for the inclination to decay by $10^circ$ is $sim10^{6} rmn{yr}$ and $sim10^{5} rmn{yr}$ for $1 rmn{M_J}$ and $6 rmn{M_J}$. Planets on inclined orbits warp the disc by an extent that is negligible for $1 rmn{M_J}$ but increases with increasing mass becoming quite significant for a planet of mass $6 rmn{M_J}$. We also find a solid body precession of both the total disc angular momentum vector and the planet orbital momentum vector about the total angular momentum vector. Our results illustrate that the influence of an inclined massive planet on a protoplanetary disc can lead to significant changes of the disc structure and orientation which can in turn affect the orbital evolution of the planet significantly.



rate research

Read More

Many of the observed spin--orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin--orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few au. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts---separated at the location of the planet---that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin--orbit angle also exhibits a secular growth in this case---driven by ongoing mass depletion from the disk---that becomes significant when the inner disks angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including to the interpretation of the alignment properties of debris disks.
We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planets orbit is circular and inclined relative to the midplane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is $leq 30^{circ}$. Using the FARGO3D code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.
116 - D. Kloster , M. Flock 2021
Over the last few years instruments such as VLT/SPHERE and Subaru/HiCIAO have been able to take detailed scattered light images of protoplanetary discs. Many of the features observed in these discs are generally suspected to be caused by an embedded planet, and understanding the cause of these features requires detailed theoretical models. In this work we investigate disc-planet interactions using the PLUTO code to run 2D and 3D hydrodynamic simulations of protoplanetary discs with embedded 30 M$_{oplus}$ and 300 M$_{oplus}$ planets on both an inclined ($i = 2.86^{circ}$) and non-inclined orbit, using an $alpha$-viscosity of $4 times 10^{-3}$. We produce synthetic scattered-light images of these discs at emph{H-band} wavelengths using the radiative transfer code RADMC3D. We find that while the surface density evolution in 2D and 3D simulations of inclined and non-inclined planets remain fairly similar, their observational appearance is remarkably different. Most of the features seen in the synthetic emph{H-band} images are connected to density variations of the disc at around 3.3 scale heights above and below the midplane, which emphasizes the need for 3D simulations. Planets on sustained orbital inclinations disrupt the discs upper-atmosphere and produce radically different observable features and intensity profiles, including shadowing effects and intensity variation in the order of 10-20 times the surrounding background. The vertical optical depth to the disc midplane for emph{H-band} wavelengths is $tau approx 20$ in the disc gap created by the high-mass planet. We conclude that direct imaging of planets embedded in the disc remains difficult to observe, even for massive planets in the gap.
We study the three-dimensional evolution of a viscous protoplanetary disc which accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accretion scenario to generate strongly inclined gaseous discs which could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space which allows significant disc inclination generation. citet{Thi2011} suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fullfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary discs orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the three-dimensional disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs which could later form misaligned planets.
The so-called dipper stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا