No Arabic abstract
Capacity of vehicular networks with infrastructure support is both an interesting and challenging problem as the capacity is determined by the inter-play of multiple factors including vehicle-to-infrastructure (V2I) communications, vehicle-to-vehicle (V2V) communications, density and mobility of vehicles, and cooperation among vehicles and infrastructure. In this paper, we consider a typical delay-tolerant application scenario with a subset of vehicles, termed Vehicles of Interest (VoIs), having download requests. Each VoI downloads a distinct large-size file from the Internet and other vehicles without download requests assist the delivery of the files to the VoIs. A cooperative communication strategy is proposed that explores the combined use of V2I communications, V2V communications, mobility of vehicles and cooperation among vehicles and infrastructure to improve the capacity of vehicular networks. An analytical framework is developed to model the data dissemination process using this strategy, and a closed form expression of the achievable capacity is obtained, which reveals the relationship between the capacity and its major performance-impacting parameters such as inter-infrastructure distance, radio ranges of infrastructure and vehicles, sensing range of vehicles, transmission rates of V2I and V2V communications, vehicular density and proportion of VoIs. Numerical result shows that the proposed cooperative communication strategy significantly boosts the capacity of vehicular networks, especially when the proportion of VoIs is low. Our results provide guidance on the optimum deployment of vehicular network infrastructure and the design of cooperative communication strategy to maximize the capacity.
In this paper, we provide detailed analysis of the achievable throughput of infrastructure-based vehicular network with a finite traffic density under a cooperative communication strategy, which explores combined use of vehicle-to-infrastructure (V2I) communications, vehicle-to-vehicle (V2V) communications, mobility of vehicles and cooperations among vehicles and infrastructure to facilitate the data transmission. A closed form expression of the achievable throughput is obtained, which reveals the relationship between the achievable throughput and its major performance-impacting parameters such as distance between adjacent infrastructure points, radio ranges of infrastructure and vehicles, transmission rates of V2I and V2V communications and vehicular density. Numerical and simulation results show that the proposed cooperative communication strategy significantly increases the throughput of vehicular networks, compared with its non-cooperative counterpart, even when the traffic density is low. Our results shed insight on the optimum deployment of vehicular network infrastructure and optimum design of cooperative communication strategies in vehicular networks to maximize the throughput.
With the increasing development of advanced communication technologies, vehicles are becoming smarter and more connected. Due to the tremendous growth of various vehicular applications, a huge amount of data is generated through advanced on-board devices and is deemed critical to improve driving safety and enhance vehicular services. However, cloud based models often fall short in applications where latency and mobility are critical. In order to fully realize the potential of vehicular networks, the challenges of efficient communication and computation need to be addressed. In this direction, vehicular fog computing (VFC) has emerged which extends the concept of fog computing to conventional vehicular networks. It is a geographically distributed paradigm that has the potential to conduct time-critical and data-intensive tasks by pushing intelligence (i.e. computing resources, storage, and application services) in the vicinity of end vehicles. However secure and reliable transmission are of significant importance in highly-mobile vehicular networks in order to ensure the optimal Quality of Service (QoS). In this direction, several authentication mechanisms have been proposed in the literature but most of them are found unfit due to absence of decentralization, anonymity, and trust characteristics. Thus, an effective cross-datacenter authentication and key-exchange scheme based on blockchain and elliptic curve cryptography (ECC) is proposed in this paper. Here, the distributed ledger of blockchain is used for maintaining the network information while the highly secure ECC is employed for mutual authentication between vehicles and road side units (RSUs). Additionally, the proposed scheme is lightweight and scalable for the considered VFC setup. The performance evaluation results against the existing state-of-the-art reveal that the proposed scheme accomplishes enhanced security features.
Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.
This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of $n$ randomly located wireless nodes. The infrastructure uses multi-antenna base stations (BSs), in which the number of BSs and the number of antennas at each BS can scale at arbitrary rates relative to $n$. Under the model, capacity scaling laws are analyzed for both dense and extended networks. Two BS-based routing schemes are first introduced in this study: an infrastructure-supported single-hop (ISH) routing protocol with multiple-access uplink and broadcast downlink and an infrastructure-supported multi-hop (IMH) routing protocol. Then, their achievable throughput scalings are analyzed. These schemes are compared against two conventional schemes without BSs: the multi-hop (MH) transmission and hierarchical cooperation (HC) schemes. It is shown that a linear throughput scaling is achieved in dense networks, as in the case without help of BSs. In contrast, the proposed BS-based routing schemes can, under realistic network conditions, improve the throughput scaling significantly in extended networks. The gain comes from the following advantages of these BS-based protocols. First, more nodes can transmit simultaneously in the proposed scheme than in the MH scheme if the number of BSs and the number of antennas are large enough. Second, by improving the long-distance signal-to-noise ratio (SNR), the received signal power can be larger than that of the HC, enabling a better throughput scaling under extended networks. Furthermore, by deriving the corresponding information-theoretic cut-set upper bounds, it is shown under extended networks that a combination of four schemes IMH, ISH, MH, and HC is order-optimal in all operating regimes.
The theory of wireless information and power transfer in energy constrained wireless networks has caught the interest of researchers due to its potential in increasing the lifetime of sensor nodes and mitigate the environment hazards caused by conventional cell batteries. Similarly, the advancements in areas of cooperative spectrum sharing protocols has enabled efficient use of frequency spectrum between a licensed primary user and a secondary user. In this paper, we consider an energy constrained secondary user which harvests energy from the primary signal and relays the primary signal in exchange for the spectrum access. We consider Nakagami-m fading model and propose two key protocols, namely time-splitting cooperative spectrum sharing (TS-CSS) and power-sharing cooperative spectrum sharing (PS-CSS), and derive expressions for the outage probabilities of the primary and secondary user in decode-forward and amplify-forward relaying modes. From the obtained results, it has been shown that the secondary user can carry its own transmission without adversely affecting the performance of the primary user and that PS-CSS protocol outperforms the TS-PSS protocol in terms of outage probability over a wide range of Signal to noise ratio(SNRs). The effect of various system parameters on the outage performance of these protocols have also been studied.