No Arabic abstract
We propose gravitational microlensing as a way of testing the emergent gravity theory recently proposed by Eric Verlinde~cite{Verlinde:2016toy}. We consider two limiting cases: the dark mass of maximally anisotropic pressures (Case I) and of isotropic pressures (Case II). Our analysis of perihelion advancement of a planet shows that only Case I yields a viable theory. In this case the metric outside a star of mass $M_*$ can be modeled by that of a point-like global monopole whose mass is $M_*$ and a deficit angle $Delta = sqrt{(2GH_0M_*)/(3c^3)}$, where $H_0$ is the Hubble rate and $G$ the Newton constant. This deficit angle can be used to test the theory since light exhibits additional bending around stars given by, $alpha_Dapprox -piDelta/2$. This angle is independent on the distance from the star and it affects equally light and massive particles. The effect is too small to be measurable today, but should be within reach of the next generation of high resolution telescopes. Finally we note that the advancement of periastron of a planet orbiting around a star or black hole, which equals $piDelta$ per period, can be also used to test the theory.
Verlinde (2016) proposed that the observed excess gravity in galaxies and clusters is the consequence of Emergent Gravity (EG). In this theory the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low redshift galaxies by assuming a background LambdaCDM cosmology. We measure the (apparent) average surface mass density profiles of 33,613 isolated central galaxies, and compare them to those predicted by EG based on the galaxies baryonic masses. To this end we employ the ~180 square degrees overlap of the Kilo-Degree Survey (KiDS) with the spectroscopic Galaxy And Mass Assembly (GAMA) survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
General theory of relativity (or Lovelock extensions) is a dynamical theory; given an initial configuration on a space-like hypersurface, it makes a definite prediction of the final configuration. Recent developments suggest that gravity may be described in terms of macroscopic parameters. It finds a concrete manifestation in the fluid-gravity correspondence. Most of the efforts till date has been to relate equilibrium configurations in gravity with fluid variables. In order for the emergent paradigm to be truly successful, it has to provide a statistical mechanical derivation of how a given initial static configuration evolves into another. In this essay, we show that the energy transport equation governed by the fluctuations of the horizon-fluid is similar to Raychaudhuri equation and, hence gravity is truly emergent.
We show that if one starts with a Universe with some matter and a cosmological constant, then quantum mechanics naturally induces an attractive gravitational potential and an effective Newtons coupling. Thus gravity is an emergent phenomenon and what should be quantized are the fundamental degrees of freedom from which it emerges.
In this work we derive a generalized Newtonian gravitational force and show that it can account for the anomalous galactic rotation curves. We derive the entropy-area relationship applying the Feynman-Hibbs procedure to the supersymmetric Wheeler-DeWitt equation of the Schwarzschild black hole. We obtain the modifications to the Newtonian gravitational force from the entropic formulation of gravity.
We study the polarizations of gravitational waves (GWs) in two classes of extended gravity theories. First, we formulate the polarizations in linear massive gravity (MG) with generic mass terms of non-Fierz-Pauli type by identifying all the independent variables that obey Klein-Gordon-type equations. The dynamical degrees of freedom (dofs) in the generic MG consist of spin-2 and spin-0 modes, the former breaking down into two tensor (helicity-2), two vector (helicity-1) and one scalar (helicity-0) components, while the latter just corresponding to a scalar. We find convenient ways of decomposing the two scalar modes of each spin into distinct linear combinations of the transverse and longitudinal polarizations with coefficients directly expressed by the mass parameters, thereby serving as a useful tool in measuring the masses of GWs. Then we analyze the linear perturbations of generic higher-curvature gravity (HCG) whose Lagrangian is an arbitrary polynomial of the Riemann tensor. On a flat background, the linear dynamical dofs in this theory are identified as massless spin-2, massive spin-2, and massive spin-0 modes. As its massive part encompasses the identical structure to the generic MG, GWs in the generic HCG provide six massive polarizations on top of the ordinary two massless modes. In parallel to MG, we find convenient representations for the scalar-polarization modes directly connected to the parameters of HCG. In this analysis, we employ two distinct methods; One takes full advantage of the partial equivalence between the generic HCG and MG at the linear level, whereas the other relies upon a gauge-invariant formalism. We confirm that the two results agree. We also discuss methods to determine the theory parameters by GW-polarization measurements. Our method does not require measuring the propagation speeds or the details of the waveforms of the GWs. [Abridged]