Do you want to publish a course? Click here

Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions

385   0   0.0 ( 0 )
 Added by Steven Olmschenk
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a pulsed nitrogen laser to produce atomic ions by laser ablation, measuring the relative ion yield for several elements, including some that have only recently been proposed for use in cold trapped ion experiments. For barium, we monitor the ion yield as a function of the number of applied ablation pulses for different substrates. We also investigate the ion production as a function of the pulse energy, and the efficiency of loading an ion trap as a function of radiofrequency voltage.



rate research

Read More

Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ. Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with an alkali or alkaline earth chlorides, denoted XCln, can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCln and the Al:XCln molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCln precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.
Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable $^2D_{3/2,5/2}$ states of Ca$^{+}$, Sr$^{+}$, and Ba$^{+}$ are studied, such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other theory and observation, which is promising for further applications in alkali-like systems.
Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complicated MCD spectral shapes, we find that (i) the 4f-5d intra-atomic exchange interaction not only induces the spin and orbital polarization of the 5d states, which is vital for the MCD spectra of the electric dipole transition from the 2p core states to the empty 5d conduction band, but also it accompanies a contraction of the radial part of the 5d wave function depending on its spin and orbital state, which results in the enhancement of the 2p-5d dipole matrix element, (ii) there are cases where the spin polarization of the 5d states due to the hybridization with the spin polarized 3d states of surrounding irons plays important roles, and (iii) the electric quadrupole transition from the 2p core states to the magnetic vale! nce 4f states is appreciable at the pre-edge region of the dipole spectrum. Especially, our results evidence that it is important to include the enhancement effect of the dipole matrix element in the correct interpretation of the MCD spectra at the RE L2,3 edges.
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential energy curves and molecular parameters for several low lying states of the Rb, Yb$^+$ system. We employ both a multi-reference configuration interaction (MRCI) and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients are estimated from our {it ab initio} data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom ($alpha_d=128.4$ atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb,Rb$^+$) channels that were carried out in our work. However, we find that the pseudo potential approximation is rather limited in validity, and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
238 - J. Joger , H. Furst , N. Ewald 2017
We report on the observation of cold collisions between $^6$Li atoms and Yb$^+$ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio. For atoms and ions prepared in the $^2S_{1/2}$ ground state, the charge transfer and association rate is found to be at least~10$^{3}$ times smaller than the Langevin collision rate. These results confirm the excellent prospects of $^6$Li--Yb$^+$ for sympathetic cooling and quantum information applications. For ions prepared in the excited electronic states $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$, we find that the reaction rate is dominated by charge transfer and does not depend on the ionic isotope nor the collision energy in the range $sim$~1--120~mK. The low charge transfer rate for ground state collisions is corroborated by theory, but the $4f$ shell in the Yb$^+$ ion prevents an accurate prediction for the charge transfer rate of the $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$ states. Using textit{ab initio} methods of quantum chemistry we calculate the atom-ion interaction potentials up to energies of 30$times 10^3$~cm$^{-1}$, and use these to give qualitative explanations of the observed rates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا