Do you want to publish a course? Click here

Safety-Aware Robot Damage Recovery Using Constrained Bayesian Optimization and Simulated Priors

59   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The recently introduced Intelligent Trial-and-Error (IT&E) algorithm showed that robots can adapt to damage in a matter of a few trials. The success of this algorithm relies on two components: prior knowledge acquired through simulation with an intact robot, and Bayesian optimization (BO) that operates on-line, on the damaged robot. While IT&E leads to fast damage recovery, it does not incorporate any safety constraints that prevent the robot from attempting harmful behaviors. In this work, we address this limitation by replacing the BO component with a constrained BO procedure. We evaluate our approach on a simulated damaged humanoid robot that needs to crawl as fast as possible, while performing as few unsafe trials as possible. We compare our new safety-aware IT&E algorithm to IT&E and a multi-objective version of IT&E in which the safety constraints are dealt as separate objectives. Our results show that our algorithm outperforms the other approaches, both in crawling speed within the safe regions and number of unsafe trials.



rate research

Read More

The recently introduced Intelligent Trial and Error algorithm (IT&E) enables robots to creatively adapt to damage in a matter of minutes by combining an off-line evolutionary algorithm and an on-line learning algorithm based on Bayesian Optimization. We extend the IT&E algorithm to allow for robots to learn to compensate for damages while executing their task(s). This leads to a semi-episodic learning scheme that increases the robots lifetime autonomy and adaptivity. Preliminary experiments on a toy simulation and a 6-legged robot locomotion task show promising results.
The high probability of hardware failures prevents many advanced robots (e.g., legged robots) from being confidently deployed in real-world situations (e.g., post-disaster rescue). Instead of attempting to diagnose the failures, robots could adapt by trial-and-error in order to be able to complete their tasks. In this situation, damage recovery can be seen as a Reinforcement Learning (RL) problem. However, the best RL algorithms for robotics require the robot and the environment to be reset to an initial state after each episode, that is, the robot is not learning autonomously. In addition, most of the RL methods for robotics do not scale well with complex robots (e.g., walking robots) and either cannot be used at all or take too long to converge to a solution (e.g., hours of learning). In this paper, we introduce a novel learning algorithm called Reset-free Trial-and-Error (RTE) that (1) breaks the complexity by pre-generating hundreds of possible behaviors with a dynamics simulator of the intact robot, and (2) allows complex robots to quickly recover from damage while completing their tasks and taking the environment into account. We evaluate our algorithm on a simulated wheeled robot, a simulated six-legged robot, and a real six-legged walking robot that are damaged in several ways (e.g., a missing leg, a shortened leg, faulty motor, etc.) and whose objective is to reach a sequence of targets in an arena. Our experiments show that the robots can recover most of their locomotion abilities in an environment with obstacles, and without any human intervention.
Deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-world applications. Apart from challenges such as precise reward function tuning, inaccurate sensing and actuation, and non-deterministic response, existing RL methods do not guarantee behavior within required safety constraints that are crucial for real robot scenarios. In this regard, we introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained proximal policy optimization (CPPO) for tracking base velocity commands while following the defined constraints. We also introduce schemes which encourage state recovery into constrained regions in case of constraint violations. We present experimental results of our training method and test it on the real ANYmal quadruped robot. We compare our approach against the unconstrained RL method and show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
Gaussian Process (GP) regression has seen widespread use in robotics due to its generality, simplicity of use, and the utility of Bayesian predictions. The predominant implementation of GP regression is a nonparameteric kernel-based approach, as it enables fitting of arbitrary nonlinear functions. However, this approach suffers from two main drawbacks: (1) it is computationally inefficient, as computation scales poorly with the number of samples; and (2) it can be data inefficient, as encoding prior knowledge that can aid the model through the choice of kernel and associated hyperparameters is often challenging and unintuitive. In this work, we propose ALPaCA, an algorithm for efficient Bayesian regression which addresses these issues. ALPaCA uses a dataset of sample functions to learn a domain-specific, finite-dimensional feature encoding, as well as a prior over the associated weights, such that Bayesian linear regression in this feature space yields accurate online predictions of the posterior predictive density. These features are neural networks, which are trained via a meta-learning (or learning-to-learn) approach. ALPaCA extracts all prior information directly from the dataset, rather than restricting prior information to the choice of kernel hyperparameters. Furthermore, by operating in the weight space, it substantially reduces sample complexity. We investigate the performance of ALPaCA on two simple regression problems, two simulated robotic systems, and on a lane-change driving task performed by humans. We find our approach outperforms kernel-based GP regression, as well as state of the art meta-learning approaches, thereby providing a promising plug-in tool for many regression tasks in robotics where scalability and data-efficiency are important.
Diversity of environments is a key challenge that causes learned robotic controllers to fail due to the discrepancies between the training and evaluation conditions. Training from demonstrations in various conditions can mitigate---but not completely prevent---such failures. Learned controllers such as neural networks typically do not have a notion of uncertainty that allows to diagnose an offset between training and testing conditions, and potentially intervene. In this work, we propose to use Bayesian Neural Networks, which have such a notion of uncertainty. We show that uncertainty can be leveraged to consistently detect situations in high-dimensional simulated and real robotic domains in which the performance of the learned controller would be sub-par. Also, we show that such an uncertainty based solution allows making an informed decision about when to invoke a fallback strategy. One fallback strategy is to request more data. We empirically show that providing data only when requested results in increased data-efficiency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا