Do you want to publish a course? Click here

Covariantly Quantum Galileon

100   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the 1-loop effective action of the cubic Galileon coupled to quantum-gravitational fluctuations in a background and gauge-independent manner, employing the covariant framework of DeWitt and Vilkovisky. Although the bare action respects shift symmetry, the coupling to gravity induces an effective mass to the scalar, of the order of the cosmological constant, as a direct result of the non-flat field-space metric, the latter ensuring the field-reparametrization invariance of the formalism. Within a gauge-invariant regularization scheme, we discover novel, gravitationally induced non-Galileon higher-derivative interactions in the effective action. These terms, previously unnoticed within standard, non-covariant frameworks, are not Planck suppressed. Unless tuned to be sub-dominant, their presence could have important implications for the classical and quantum phenomenology of the theory.



rate research

Read More

The investigation of UV divergences is a relevant step in better understanding of a new theory. In this work the one-loop divergences in the free field sector are obtained for the popular Galileons model. The calculations are performed by the generalized Schwinger-DeWitt technique and also by means of Feynman diagrams. The first method can be directly generalized to curved space, but here we deal only with the flat-space limit. We show that the UV completion of the theory includes the $pi Box^4pi$ term. According to our previous analysis in the case of quantum gravity, this means that the theory can be modified to become superrenormalizable, but then its physical spectrum includes two massive ghosts and one massive scalar with positive kinetic energy. The effective approach in this theory can be perfectly successful, exactly as in the higher derivative quantum gravity, and in this case the non-renormalization theorem for Galileons remains valid in the low-energy region.
The effective action of the recently proposed vector Galileon theory is considered. Using the background field method, we obtain the one-loop correction to the propagator of the Proca field from vector Galileon self-interactions. Contrary to the so-called scalar Galileon interactions, the two-point function of the vector field gets renormalized at the one-loop level, indicating that there is no non-renormalization theorem in the vector Galileon theory. Using dimensional regularization, we remove the divergences and obtain the counterterms of the theory. The finite term is analytically calculated, which modifies the propagator and the mass term and generates some new terms also.
We show that it is possible to formulate string theory as a Galileon string theory. The galileon field $chi$ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of Polyakov. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time the theory satisfies all requirements of the galileon higher derivative theory at the action level while the equations of motion are still of the second order. A galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also we define the galileon gauge transformations. Generalizations to branes with other modified measures are discussed.
We consider the renormalization of d-dimensional hypersurfaces (branes) embedded in flat (d+1)-dimensional space. We parametrize the truncated effective action in terms of geometric invariants built from the extrinsic and intrinsic curvatures. We study the renormalization-group running of the couplings and explore the fixed-point structure. We find evidence for an ultraviolet fixed point similar to the one underlying the asymptotic-safety scenario of gravity. We also examine whether the structure of the Galileon theory, which can be reproduced in the nonrelativistic limit, is preserved at the quantum level.
277 - Erwan Allys 2016
We investigate a new class of scalar multi-galileon models, which is not included in the commonly admitted general formulation of generalized multi-galileons. The Lagrangians of this class of models, some of them having already been introduced in previous works, are specific to multi-galileon theories, and vanish in the single galileon case. We examine them in details, discussing in particular some hidden symmetry properties which can be made explicit by adding total derivatives to these Lagrangians. These properties allow us to describe the possible dynamics for these new Lagrangians in the case of multi-galileons in the fundamental representation of a SO(N) and SU(N) global symmetry group, as well as in the adjoint representation of a SU(N) global symmetry group. We perform in parallel an exhaustive examination of some of these models, finding a complete agreement with the dynamics obtained using the symmetry properties. Finally, we conclude by discussing what could be the most general multi-galileon theory, as well as the link between scalar and vector multi-galileon models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا