No Arabic abstract
The effective action of the recently proposed vector Galileon theory is considered. Using the background field method, we obtain the one-loop correction to the propagator of the Proca field from vector Galileon self-interactions. Contrary to the so-called scalar Galileon interactions, the two-point function of the vector field gets renormalized at the one-loop level, indicating that there is no non-renormalization theorem in the vector Galileon theory. Using dimensional regularization, we remove the divergences and obtain the counterterms of the theory. The finite term is analytically calculated, which modifies the propagator and the mass term and generates some new terms also.
The investigation of UV divergences is a relevant step in better understanding of a new theory. In this work the one-loop divergences in the free field sector are obtained for the popular Galileons model. The calculations are performed by the generalized Schwinger-DeWitt technique and also by means of Feynman diagrams. The first method can be directly generalized to curved space, but here we deal only with the flat-space limit. We show that the UV completion of the theory includes the $pi Box^4pi$ term. According to our previous analysis in the case of quantum gravity, this means that the theory can be modified to become superrenormalizable, but then its physical spectrum includes two massive ghosts and one massive scalar with positive kinetic energy. The effective approach in this theory can be perfectly successful, exactly as in the higher derivative quantum gravity, and in this case the non-renormalization theorem for Galileons remains valid in the low-energy region.
We study string loop corrections to the gravity kinetic terms in type IIB compactifications on Calabi-Yau threefolds or their orbifold limits, in the presence of $D7$-branes and orientifold planes. We show that they exhibit in general a logarithmic behaviour in the large volume limit transverse to the $D7$-branes, induced by a localised four-dimensional Einstein-Hilbert action that appears at a lower order in the closed string sector, found in the past. Here, we compute the coefficient of the logarithmic corrections and use them to provide an explicit realisation of a mechanism for Kahler moduli stabilisation that we have proposed recently, which does not rely on non-perturbative effects and lead to de Sitter vacua. Our result avoids no-go theorems of perturbative stabilisation due to runaway potentials, in a way similar to the Coleman-Weinberg mechanism, and provides a counter example to one of the swampland conjectures concerning de Sitter vacua in quantum gravity, once string loop effects are taken into account; it thus paves the way for embedding the Standard Model of particle physics and cosmology in string theory.
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS$_5times$S$^5$. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop-amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in $alpha$ not considered before.
We derive the 1-loop effective action of the cubic Galileon coupled to quantum-gravitational fluctuations in a background and gauge-independent manner, employing the covariant framework of DeWitt and Vilkovisky. Although the bare action respects shift symmetry, the coupling to gravity induces an effective mass to the scalar, of the order of the cosmological constant, as a direct result of the non-flat field-space metric, the latter ensuring the field-reparametrization invariance of the formalism. Within a gauge-invariant regularization scheme, we discover novel, gravitationally induced non-Galileon higher-derivative interactions in the effective action. These terms, previously unnoticed within standard, non-covariant frameworks, are not Planck suppressed. Unless tuned to be sub-dominant, their presence could have important implications for the classical and quantum phenomenology of the theory.
In this paper, we investigate the thermal effect on the Casimir energy associated with a massive scalar quantum field confined between two large parallel plates in a CPT-even, aether-like Lorentz-breaking scalar field theory. In order to do that we consider a nonzero chemical potential for the scalar field assumed to be in thermal equilibrium at some finite temperature. The calculations of the energies are developed by using the Abel-Plana summation formula, and the corresponding results are analyzed in several asymptotic regimes of the parameters of the system, like mass, separations between the plates and temperature.