Do you want to publish a course? Click here

Sensitivity of the T2HKK experiment to the non-standard interaction

120   0   0.0 ( 0 )
 Added by Monojit Ghosh
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

If the flavor dependent non-standard interactions (NSI) in neutrino propagation exist, then the matter effect is modified and the modification is parametrized by the dimensionless parameter $epsilon_{alphabeta}~(alpha,beta=e, mu, tau)$. In this paper we discuss the sensitivity of the T2HKK experiment, whose possibility is now seriously discussed as a future extension of the T2K experiment, to such NSI. On the assumption that $epsilon_{alphamu}=0~(alpha=e, mutau)$ and $epsilon_{tautau}=|epsilon_{etau}|/(1+epsilon_{ee})$, which are satisfied by other experiments to a good approximation, we find that, among the possible off-axis flux configurations of $1.3^circ$, $1.5^circ$, $2.0^circ$ and $2.5^circ$, the case of the off-axis angle $1.3^circ$ gives the highest sensitivity to $epsilon_{ee}$ and $|epsilon_{etau}|$. Our results show that the $1.3^circ$ off-axis configuration can exclude NSI for $|epsilon_{ee}|gtrsim 1$ or $|epsilon_{etau}|gtrsim 0.2$ at 3$sigma$. We also find that in the presence of NSI, T2HKK (for the off-axis angle $1.3^circ$) has better sensitivity to the two CP phases ($delta_{CP}$ and arg($epsilon_{e tau}$)) than DUNE. This is because of the synergy between the two detectors i.e., one at Kamioka and one at Korea. T2HKK has better sensitivity to the CP phases than the atmospheric neutrino experiment at Hyperkamiokande in inverted hierarchy, but in normal hierarchy the atmospheric neutrino experiment has the best sensitivity to the CP phases.



rate research

Read More

In this work we study the the sensitivity of the T2HKK experiment to probe non-standard interaction in neutrino propagation. As this experiment will be statistically dominated due to its large detector volume and high beam-power, it is expected that the sensitivity will be affected by systematics. This motivates us to study the effect of systematics in probing the non-standard interaction. We also compare our results with the other future proposed experiments i.e., T2HK, HK and DUNE.
It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8 $sigma$, while the one from the global analysis can be examined at 5.0 $sigma$ (1.4 $sigma$) for the normal (inverted) mass hierarchy.
55 - Osamu Yasuda 2016
In this talk we discuss the possibility to test the hypothesis, which has been proposed to explain the tension between the mass-squared differences of the solar neutrino and KamLAND experiments by the non-standard flavor-dependent interaction in neutrino propagation, with the atmospheric neutrino observations at the future Hyper-Kamiokande experiment.
The full physics potential of the next-generation Deep Underground Neutrino Experiment (DUNE) is still being explored. In particular, there have been some recent studies on the possibility of improving DUNEs neutrino energy reconstruction. The main motivation is that a better determination of the neutrino energy in an event-by-event basis will translate into an improved measurement of the Dirac $CP$ phase and other neutrino oscillation parameters. To further motivate studies and improvements on the neutrino energy reconstruction, we evaluate the impact of energy resolution at DUNE on an illustrative new physics scenario, viz. non-standard interactions (NSI) of neutrinos with matter. We show that a better energy resolution in comparison to the ones given in the DUNE conceptual and technical design reports may significantly enhance the experimental sensitivity to NSI, particularly when degeneracies are present. While a better reconstruction of the first oscillation peak helps disentangling standard $CP$ effects from those coming from NSIs, we find that the second oscillation peak also plays a nontrivial role in improving DUNEs sensitivity.
We study the sensitivity of future low energy neutrino experiments to extra neutral gauge bosons, leptoquarks and R-parity breaking interactions. We focus on future proposals to measure coherent neutrino-nuclei scattering and neutrino-electron elastic scattering. We introduce a new comparative analysis between these experiments and show that in different types of new physics it is possible to obtain competitive bounds to those of present and future collider experiments. For the cases of leptoquarks and R-parity breaking interactions we found that the expected sensitivity for most of the future low energy experimental setups is better than the current constraints.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا