Do you want to publish a course? Click here

Will atmospheric neutrino experiment at Hyper-Kamiokande see non-standard interaction effects?

56   0   0.0 ( 0 )
 Added by Osamu Yasuda
 Publication date 2016
  fields
and research's language is English
 Authors Osamu Yasuda




Ask ChatGPT about the research

In this talk we discuss the possibility to test the hypothesis, which has been proposed to explain the tension between the mass-squared differences of the solar neutrino and KamLAND experiments by the non-standard flavor-dependent interaction in neutrino propagation, with the atmospheric neutrino observations at the future Hyper-Kamiokande experiment.



rate research

Read More

252 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8 $sigma$, while the one from the global analysis can be examined at 5.0 $sigma$ (1.4 $sigma$) for the normal (inverted) mass hierarchy.
159 - G. Mitsuka , K. Abe , Y. Hayato 2011
In this paper we study non-standard neutrino interactions as an example of physics beyond the standard model using atmospheric neutrino data collected during the Super-Kamiokande I(1996-2001) and II(2003-2005) periods. We focus on flavor-changing-neutral-currents (FCNC), which allow neutrino flavor transitions via neutral current interactions, and effects which violate lepton non-universality (NU) and give rise to different neutral-current interaction-amplitudes for different neutrino flavors. We obtain a limit on the FCNC coupling parameter, varepsilon_{mu tau}, |varepsilon_{mu tau}|<1.1 x 10^{-2} at 90%C.L. and various constraints on other FCNC parameters as a function of the NU coupling, varepsilon_{e e}. We find no evidence of non-standard neutrino interactions in the Super-Kamiokande atmospheric data.
A variety of new physics scenarios allow for neutrinos to up-scatter into a heavy neutral lepton state. For a range of couplings and neutrino energies, the heavy neutrino may travel some distance before decaying to visible final states. When both the up-scattering and decay occur within the detector volume, these double bang events produce distinctive phenomenology with very low background. In this work, we first consider the current sensitivity at Super-Kamiokande via the atmospheric neutrino flux, and find current data may already provide new constraints. We then examine projected future sensitivity at DUNE and Hyper-Kamiokande, including both atmospheric and beam flux contributions to double-bang signals.
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energy range, $E in [1,20]$ GeV and zenith angle range, $cos theta in [-1,0]$. We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range $E in [1,10]$ GeV for two different detector configurations - a magnetized iron calorimeter and an unmagnetized liquid Argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics. As an application, we discuss how NSI parameter, $epsilon_{mutau}$ impacts the determination of the correct octant of $theta_{23}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا