No Arabic abstract
In this paper we present two analytical frameworks for calculating the performance of lock-free data structures. Lock-free data structures are based on retry loops and are called by application-specific routines. In contrast to previous work, we consider in this paper lock-free data structures in dynamic environments. The size of each of the retry loops, and the size of the application routines invoked in between, are not constant but may change dynamically. The new frameworks follow two different approaches. The first framework, the simplest one, is based on queuing theory. It introduces an average-based approach that facilitates a more coarse-grained analysis, with the benefit of being ignorant of size distributions. Because of this independence from the distribution nature it covers a set of complicated designs. The second approach, instantiated with an exponential distribution for the size of the application routines, uses Markov chains, and is tighter because it constructs stochastically the execution, step by step. Both frameworks provide a performance estimate which is close to what we observe in practice. We have validated our analysis on (i) several fundamental lock-free data structures such as stacks, queues, deques and counters, some of them employing helping mechanisms, and (ii) synthetic tests covering a wide range of possible lock-free designs. We show the applicability of our results by introducing new back-off mechanisms, tested in application contexts, and by designing an efficient memory management scheme that typical lock-free algorithms can utilize.
Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.
This paper presents the tracking approach for deriving detectably recoverable (and thus also durable) implementations of many widely-used concurrent data structures. Such data structures, satisfying detectable recovery, are appealing for emerging systems featuring byte-addressable non-volatile main memory (NVRAM), whose persistence allows to efficiently resurrect failed processes after crashes. Detectable recovery ensures that after a crash, every executed operation is able to recover and return a correct response, and that the state of the data structure is not corrupted. Info-Structure Based (ISB)-tracking amends descriptor objects used in existing lock-free helping schemes with additional fields that track an operations progress towards completion and persists these fields to memory in order to ensure detectable recovery. ISB-tracking avoids full-fledged logging and tracks the progress of concurrent operations in a per-process manner, thus reducing the cost of ensuring detectable recovery. We have applied ISB-tracking to derive detectably recoverable implementations of a queue, a linked list, a binary search tree, and an exchanger. Experimental results show the feasibility of the technique.
This paper considers the modelling and the analysis of the performance of lock-free concurrent search data structures. Our analysis considers such lock-free data structures that are utilized through a sequence of operations which are generated with a memoryless and stationary access pattern. Our main contribution is a new way of analysing lock-free search data structures: our execution model matches with the behavior that we observe in practice and achieves good throughput predictions. Search data structures are formed of linked basic blocks, usually referred as nodes, that can be accessed by two kinds of events, characterized by their latencies; (i) CAS events originated as a result of modifications of the search data structures (ii) Read events originated during traversals. This type of data structures are usually designed to accommodate a large number of data nodes, which makes the occurrence of an event on a given node rare at any given time. The throughput is defined by the number of events per operation in conjunction with the factors that impact the latencies of these events. We frame these impacting factors under capacity and coherence cache misses. In this context, we model the events as Poisson processes that we can merge and split to estimate the latencies of the events based on the interleaving of events from different threads, and in turn estimate the throughput. We have validated our analysis on several fundamental lock-free search data structures such as linked lists, hash tables, skip lists and binary trees.
Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques remain cumbersome and notoriously difficult while automated approaches suffer from limited applicability. The main obstacle for automation is the complexity of concurrent data structures. This is particularly true in the absence of garbage collection. The intricacy of lock-free memory management paired with the complexity of concurrent data structures makes automated verification prohibitive. In this work we present a method for verifying concurrent data structures and their memory management separately. We suggest two simpler verification tasks that imply the correctness of the data structure. The first task establishes an over-approximation of the reclamation behavior of the memory management. The second task exploits this over-approximation to verify the data structure without the need to consider the implementation of the memory management itself. To make the resulting verification tasks tractable for automated techniques, we establish a second result. We show that a verification tool needs to consider only executions where a single memory location is reused. We implemented our approach and were able to verify linearizability of Michael&Scotts queue and the DGLM queue for both hazard pointers and epoch-based reclamation. To the best of our knowledge, we are the first to verify such implementations fully automatically.
We consider the problem of efficiently managing massive data in a large-scale distributed environment. We consider data strings of size in the order of Terabytes, shared and accessed by concurrent clients. On each individual access, a segment of a string, of the order of Megabytes, is read or modified. Our goal is to provide the clients with efficient fine-grain access the data string as concurrently as possible, without locking the string itself. This issue is crucial in the context of applications in the field of astronomy, databases, data mining and multimedia. We illustrate these requiremens with the case of an application for searching supernovae. Our solution relies on distributed, RAM-based data storage, while leveraging a DHT-based, parallel metadata management scheme. The proposed architecture and algorithms have been validated through a software prototype and evaluated in a cluster environment.