Do you want to publish a course? Click here

Half-filled intermediate bands Si material formed by energetically metastable interstitial sulfur atom

83   0   0.0 ( 0 )
 Added by Wang Ke-Fan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyperdoped metastable sulfur atoms endow crystalline silicon with a strong sub-bandgap light absorption. In order to explore such metastable states, we develop a new high-throughput first-principles calculation method to search for all of the energetically metastable states for an interstitial sulfur atom inside crystalline silicon. Finally, we obtain sixty-three metastable interstitial states and they can be classified into ten types. Interestingly, twenty-eight (44% in total) of lower-energy metastable states can produce a well-isolated and half-filled intermediate band (IB) inside silicon forbidden gap, which makes sulfur hyperdoped silicon to be a desirable material for IB solar cells.



rate research

Read More

The determining factor of the bulk properties of doped Si is the column rather than the row in the periodic table from which the dopants are drawn. It is unknown whether the basic properties of dopants at surfaces and interfaces, steadily growing in importance as microelectronic devices shrink, are also solely governed by their column of origin. The common light impurity P replaces individual Si atoms and maintains the integrity of the dimer superstructure of the Si(001) surface, but loses its valence electrons to surface states. Here we report that isolated heavy dopants are entirely different: Bi atoms form pairs with Si vacancies, retain their electrons and have highly localized, half-filled orbitals.
A ternary ferrimagnetic half-metal, constructed through substituting 25% Fe for Mn in zincblende semiconductor MnTe, is predicted in terms of accurate first-principles calculations. It has a large half-metallic (HM) gap of 0.54eV and its ferrimagnetic order is very stable against other magnetic fluctuations. The HM ferrimagnetism is formed because the complete moment compensation in the antiferromagnetic MnTe is replaced by an uncomplete one in the Fe-substituted MnTe. This should make a novel approach to new HM materials. The half-metal could be fabricated because Fe has good affinity with Mn, and useful for spintronics.
The electrical field gradient (EFG), measured e.g. in perturbed angular correlation (PAC) experiments, gives particularly useful information about the interaction of probe atoms like 111In / 111Cd with other defects. The interpretation of the EFG is, however, a difficult task. This paper aims at understanding the interaction of Cd impurities with vacancies and interstitials in Si and Ge, which represents a controversial issue. We apply two complementary ab initio methods in the framework of density functional theory (DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct local geometry. Surprisingly we find that both in Si and Ge the substitutional Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the Cd on the bond-center site. This complex has a very small EFG, allowing a unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si. Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split configuration with large EFGs, being in reasonable agreement with experiments.
We study the quantum phase diagram of spinful fermions on kagome lattice with half-filled lowest flat bands. To understand the competition between magnetism, flat band frustration, and repulsive interactions, we adopt an extended $t$-$J$ model, where the hopping energy $t$, antiferromagnetic Heisenberg interaction $J$, and short-range neighboring Hubbard interaction $V$ are considered. In the weak $J$ regime, we identify a fully spin-polarized phase, which can further support the spontaneous Chern insulating phase driven by the short-range repulsive interaction. This phase still emerges with in-plane ferromagnetism, whereas the non-interacting Chern insulator disappears constrained by symmetry. As $J$ gradually increases, the ferromagnetism is suppressed and the system first becomes partially-polarized with large magnetization and then enters a non-polarized phase with the ground state exhibiting vanishing magnetization. We identify this non-polarized phase as an insulator with a nematic charge density wave. In the end, we discuss the potential experimental observations of our theoretical findings.
We have successfully demonstrated Si/GaAs p-n heterostructures using Al2O3 ultra-thin oxide interfacial layers. The band diagram and band offsets were investigated using X-ray photoelectron spectroscopy and confirm a small discontinuity in the conduction band (0.03 eV) at the interface. The interface defect density (Dit) values of the heterointerface with different ultra-thin oxide (UO) thicknesses ranged from 0.35 nm to 3.5 nm and were also characterized based on a metal-oxide-semiconductor capacitor (MOSCAP) structure using a capacitance-voltage measurement. The results revealed that a thin UO interfacial layer (around 1 nm) maximizes carrier transport property due to better surface passivation and efficient tunneling properties. Thermal property investigation also shows that the Al2O3 UO interfacial layer offers a good tunneling layer but also facilitates phonon transport across the interface. Finally, the electrical characterization of Si/GaAs heterojunction p-n diodes confirms reliable rectifying behavior with an extremely low ideality factor; thus, heterogeneous integration using the UO approach offers a robust way to create more types of heterojunctions between dissimilar semiconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا