Do you want to publish a course? Click here

Half-metallic ferrimagnet formed by substituting Fe for Mn in semiconductor MnTe

93   0   0.0 ( 0 )
 Added by Bang-Gui Liu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A ternary ferrimagnetic half-metal, constructed through substituting 25% Fe for Mn in zincblende semiconductor MnTe, is predicted in terms of accurate first-principles calculations. It has a large half-metallic (HM) gap of 0.54eV and its ferrimagnetic order is very stable against other magnetic fluctuations. The HM ferrimagnetism is formed because the complete moment compensation in the antiferromagnetic MnTe is replaced by an uncomplete one in the Fe-substituted MnTe. This should make a novel approach to new HM materials. The half-metal could be fabricated because Fe has good affinity with Mn, and useful for spintronics.



rate research

Read More

The density of non-quasiparticle states in the ferrimagnetic full-Heuslers Mn$_2$VAl alloy is calculated from first principles upon appropriate inclusion of correlations. In contrast to most half-metallic compounds, this material displays an energy gap in the majority-spin spectrum. For this situation, non-quasiparticle states are located below the Fermi level, and should be detectable by spin-polarized photoemission. This opens a new way to study many-body effects in spintronic-related materials.
We have studied the electronic structure of ferrimagnetic Mn2VAl single crystal by means of soft X-ray absorption spectroscopy (XAS), X-ray absorption magnetic circular dichroism (XMCD) and resonant soft X-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all constitute elements, supporting the spin polarized states at the Fermi level. The Mn $L_{2,3}$ XAS and XMCD spectra are reproduced by the spectral simulation based on density-functional theory (DFT), indicating itinerant character of the Mn 3d states. On the other hand, V $3d$ electrons are rather localized since the ionic model can qualitatively explain the V $L_{2,3}$ XAS and XMCD spectra as well as the local dd excitation revealed by V $L_3$ RIXS.
Directly measuring elementary electronic excitations in dopant $3d$ metals is essential to understanding how they function as part of their host material. Through calculated crystal field splittings of the $3d$ electron band it is shown how transition metals Mn, Fe, Co, and Ni are incorporated into SnO$_2$. The crystal field splittings are compared to resonant inelastic x-ray scattering (RIXS) experiments, which measure precisely these elementary $dd$ excitations. The origin of spectral features can be determined and identified via this comparison, leading to an increased understanding of how such dopant metals situate themselves in, and modify the hosts electronic and magnetic properties; and also how each element differs when incorporated into other semiconducting materials. We found that oxygen vacancy formation must not occur at nearest neighbour sites to metal atoms, but instead must reside at least two coordination spheres beyond. The coordination of the dopants within the host can then be explicitly related to the $d$-electron configurations and energies. This approach facilitates an understanding of the essential link between local crystal coordination and electronic/magnetic properties.
Next-generation spintronic devices will benefit from low-dimensionality, ferromagnetism, and half-metallicity, possibly controlled by electric fields. We find these technologically-appealing features to be combined with an exotic microscopic origin of magnetism in doped CdOHCl, a van der Waals material from which 2D layers may be exfoliated. By means of first principles simulations, we predict homogeneous hole-doping to give rise to $p$-band magnetism in both the bulk and monolayer phases and interpret our findings in terms of Stoner instability: as the Fermi level is tuned via hole-doping through singularities in the 2D-like density of states, ferromagnetism develops with large saturation magnetization of 1 $mu_B$ per hole, leading to a half-metallic behaviour for layer carrier densities of the order of 10$^{14}$ cm$^{-2}$. Furthermore, we put forward electrostatic doping as an additional handle to induce magnetism in monolayers and bilayers of CdOHCl. Upon application of critical electric fields perpendicular to atomically-thin-films (as low as 0.2 V/$A{deg}$ and 0.5 V/$A{deg}$ in the bilayer and monolayer case, respectively), we envisage the emergence of a magnetic half-metallic state. The different behaviour of monolayer vs bilayer systems, as well as an observed asymmetric response to positive and negative electric fields in bilayers, are interpreted in terms of intrinsic polarity of CdOHCl atomic stacks, a distinctive feature of the material. In perspective, given the experimentally accessible magnitude of critical fields in bilayer of CdOHCl, one can envisage $p$ band magnetism to be exploited in miniaturized spintronic devices.
We consider two cobalt-based full-Heusler compounds CoFeTiAl and Co$_2$FeSi, for which Coulomb correlation effects play an important role. Since the standard GGA scheme does not provide a precise description of the electronic properties near the Fermi level, we use a meta-GGA functional capable to improve the description of the electronic properties of CoFeTiAl and Co$_2$FeSi. In particular, we find a better agreement with the experiment for the magnetic moment and the energy-band gap. Moreover, our calculations show that pressure enhances the insulating properties of Co$_2$FeSi and CoTiFeAl.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا