Do you want to publish a course? Click here

Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

52   0   0.0 ( 0 )
 Added by Bosco H. K. Yung
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The small-scale bipolar jets having short dynamical ages from water fountain (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.



rate research

Read More

We briefly introduce the VLBI maser astrometric analysis of IRAS 18043-2116 and IRAS 18113-2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser structures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.
Water fountain stars (WFs) are evolved objects with water masers tracing high-velocity jets (up to several hundreds of km s$^{-1}$). They could represent one of the first manifestations of collimated mass-loss in evolved objects and thus, be a key to understanding the shaping mechanisms of planetary nebulae. Only 13 objects had been confirmed so far as WFs with interferometer observations. We present new observations with the Australia Telescope Compact Array and archival observations with the Very Large Array of four objects that are considered to be WF candidates, mainly based on single-dish observations. We confirm IRAS 17291-2147 and IRAS 18596+0315 (OH 37.1-0.8) as bona fide members of the WF class, with high-velocity water maser emission consistent with tracing bipolar jets. We argue that IRAS 15544-5332 has been wrongly considered as a WF in previous works, since we see no evidence in our data nor in the literature that this object harbours high-velocity water maser emission. In the case of IRAS 19067+0811, we did not detect any water maser emission, so its confirmation as a WF is still pending. With the result of this work, there are 15 objects that can be considered confirmed WFs. We speculate that there is no significant physical difference between WFs and obscured post-AGB stars in general. The absence of high-velocity water maser emission in some obscured post-AGB stars could be attributed to a variability or orientation effect.
Carbon monoxide (CO) is the most abundant molecule after molecular hydrogen and is important for the chemistry in circumstellar envelopes around evolved stars. When modelling the strength and shape of molecular lines, the size of the CO envelope is an input parameter and influences the derived mass-loss rates. In particular the low-J transition CO lines are sensitive to the CO photodissociation radius. Recently, new CO photodissociation radii have been published using different formalisms that differ considerably. One set of calculations is based on an escape-probability formalisms that uses numerical approximations derived in the early-eighties. The accuracy of these approximations is investigated and it is shown that they are less accurate than claimed. Improved formalism are derived. Nevertheless, the changes in CO envelope size are small to moderate, less than 2% for models with $10^{-7}< dot{M}< 10^{-4}$ msolyr and at most 7% for model with $dot{M} = 10^{-8}$ msolyr.
We have mapped 12CO J=3-2 and other molecular lines from the water-fountain bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ~0.35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few x 10^6 cm^{-3}), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to >3.5 x 10^{-4} Msun/yr in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 Msun) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.
We present Expanded Very Large Array (EVLA) water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of ~500 km/s, the second largest found in a Galactic maser, only surpassed by the high-mass star forming region W49N. Maser components are grouped into a blue and a redshifted cluster, separated by 0.12. Further mid-IR and radio data suggest that IRAS 18113-2503 is a post-AGB star, thus a new bona fide member of the rare class of water fountains. It is the evolved object with the largest total velocity spread in its water masers, and with the highest velocity dispersion within its red- and blue-shifted lobes (~170 km/s). The large total velocity range of emission probably indicates that IRAS 18113-2503 has the fastest jet among the known water fountain stars. On the other hand, the remarkably high velocity dispersion within each lobe may be interpreted in terms of shocks produced by an episode of mass ejection whose velocity increased up to very high values or, alternatively, by projection effects in a jet with a large opening angle and/or precessing motions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا