No Arabic abstract
The spectral characteristics of near-field thermal emission from nanoparticle arrays are explained by comparison to the dispersions for propagating modes. Using the coupled dipole model, we analytically calculate the spectral emission from single particles, chains, planes, and 3D arrays of SiO2 and SiC. We show that the differences in their spectra are due to the existence or absence of propagating surface phonon polariton modes and that the emission is dominated by these modes when they are present. This work paves the way for understanding and control of near-field radiation in nanofluids, nanoparticle beds, and certain metamaterials.
The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.
In dense systems composed of numerous nanoparticles, direct simulations of near-field radiative heat transfer (NFRHT) require considerable computational resources. NFRHT for the simple one-dimensional nanoparticle chains embedded in a non-absorbing host medium is investigated from the point of view of the continuum by means of an approach combining the many-body radiative heat transfer theory and the Fourier law. Effects of the phase change of the insulator-metal transition material (VO$_2$), the complex many-body interaction (MBI) and the host medium relative permittivity on the characteristic effective thermal conductivity (ETC) are analyzed. The ETC for VO$_2$ nanoparticle chains below the transition temperature can be as high as 50 times of that above the transition temperature due to the phase change effect. The strong coupling in the insulator-phase VO$_2$ nanoparticle chain accounts for its high ETC as compared to the low ETC for the chain at the metallic phase, where there is a mismatch between the characteristic thermal frequency and resonance frequency. The strong MBI is in favor of the ETC. For SiC nanoparticle chains, the MBI even can double the ETC as compared to those without considering the MBI effect. For the dense chains, a strong MBI enhances the ETC due to the strong inter-particles couplings. When the chains go more and more dilute, the MBI can be neglected safely due to negligible couplings. The host medium relative permittivity significantly affects the inter-particles couplings, which accounts for the permittivity-dependent ETC for the VO$_2$ nanoparticle chains.
We report the magnetotransport properties of self-assembled Co@CoO nanoparticle arrays at temperatures below 100 K. Resistance shows thermally activated behavior that can be fitted by the general expression of R exp{(T/T0)^v}. Efros-Shklovskii variable range hopping (v=1/2) and simple activation (hard gap, v=1) dominate the high and low temperature region, respectively, with a strongly temperature-dependent transition regime in between. A giant positive magnetoresistance of >1,400% is observed at 10K, which decreases with increasing temperature. The positive MR and most of its features can be explained by the Zeeman splitting of the localized states that suppresses the spin dependent hopping paths in the presence of on-site Coulomb repulsion.
We investigate transport in weakly-coupled metal nanoparticle arrays, focusing on the regime where tunneling is competing with strong single electron charging effects. This competition gives rise to an interplay between two types of charge transport. In sequential tunneling, transport is dominated by independent electron hops from a particle to its nearest neighbor along the current path. In inelastic cotunneling, transport is dominated by cooperative, multi-electron hops that each go to the nearest neighbor but are synchronized to move charge over distances of several particles. In order to test how the temperature-dependent cotunnel distance affects the current-voltage ($I-V$) characteristics we perform a series of systematic experiments on highly-ordered, close-packed nanoparticle arrays. The arrays consist of $sim 5.5$nm diameter gold nanocrystals with tight size dispersion, spaced $sim 1.7$nm apart by interdigitating shells of dodecanethiol ligands. We present $I-V$ data for mono-, bi-, tri- and tetralayer arrays. For stacks 2-4 layers thick we compare in-plane measurements with data for vertical transport, perpendicular to the array plane. Our results support a picture whereby transport inside the Coulomb blockade regime occurs by inelastic cotunneling, while sequential tunneling takes over at large bias above the global Coulomb blockade threshold $V_t(T)$, and at high temperatures.
We study the blackbody spectrum from slabs of three-dimensional metallodielectric photonic crystals consisting of gold nanoparticles using an ab initio multiple-scattering method. The spectra are calculated for different photonic-crystal slab thicknesses, particle radii and hosting materials. We find in particular that such crystals exhibit a broadband emission spectrum above a specific cutoff frequency with emissivity of about 90%. The studied photonic crystals can be used as efficient selective emitters and can therefore find application in thermophotovoltaics and sensing.