No Arabic abstract
Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogens epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogens persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large scale spreading. Findings are highlighted in reference to previous works and to real scenarios. Our work uncovers the crucial role of hosts mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
Non-pharmacologic interventions (NPIs) are one method to mitigate the spread and effects of the COVID-19 pandemic in the United States. NPIs promote protective actions to reduce exposure risk and can reduce mobility patterns within communities. Growing research literature suggests that socially vulnerable populations are disproportionately impacted with higher infection and higher fatality rates of COVID-19, though there is limited understanding of the underlying mechanisms to this health disparity. Thus, the research examines two distinct and complimentary datasets at a granular scale for five urban locations. Through statistical and spatial analyses, the research extensively investigates the exposure risk reduction of socially vulnerable populations due to NPIs. The mobility dataset tracks population movement across ZIP codes; it is used for an origin-destination network analysis. The population activity dataset is based on the number of visits from census block groups (CBG) to points of interest (POIs), such as grocery stores, restaurants, education centers, and medical facilities; it is used for network analysis of population-facilities interactions. The mobility dataset showed that, after the implementation of NPIs, socially vulnerable populations engaged in increased mobility in the form of inflow between ZIP code areas. Similarly, population activity analysis showed an increased exposure risk for socially vulnerable populations based on a greater number of inflow visits of CBGs to POIs, which increases the risk of contact at POIs, and a greater number of outflow visits from POIs to home CBGs, which increases risk of transmission within CBGs. These findings can assist emergency planners and public health officials in comprehending how different groups are able to implement protective actions and can inform more equitable and data-driven NPI policies for future epidemics.
We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical expression for the global invasion threshold of a contagion process. Remarkably, the scaling of human contacts is found to facilitate the spreading dynamics. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, and ideas.
Residential mobility is deeply entangled with all aspects of hunter-gatherer life ways, and is therefore an issue of central importance in hunter-gatherer studies. Hunter-gatherers vary widely in annual rates of residential mobility, and understanding the sources of this variation has long been of interest to anthropologists and archaeologists. Since mobility is, to a large extent, driven by the need for a continuous supply of food, a natural framework for addressing this question is provided by the metabolic theory of ecology. This provides a powerful framework for formulating formal testable hypotheses concerning evolutionary and ecological constraints on the scale and variation of hunter-gatherer residential mobility. We evaluate these predictions using extant data and show strong support for the hypotheses. We show that the overall scale of hunter-gatherer residential mobility is predicted by average human body size, and the limited capacity of mobile hunter-gatherers to store energy internally. We then show that the majority of variation in residential mobility observed across cultures is predicted by energy availability in local ecosystems. Our results demonstrate that large-scale evolutionary and ecological processes, common to all plants and animals, constrain hunter-gatherers in predictable ways as they move through territories to effectively exploit resources over the course of a year. Moreover, our results extend the scope of the metabolic theory of ecology by showing how it successfully predicts variation in the behavioral ecology of populations within a species.
Understanding influencing factors is essential for the surveillance and prevention of infectious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. Taking daily cases and deaths data during the coronavirus disease 2019 (COVID-19) outbreak in the U.S. as a case study, we develop a mobility-augmented geographically and temporally weighted regression (M-GTWR) model to quantify the spatiotemporal impacts of social-demographic factors and human activities on the COVID-19 dynamics. Different from the base GTWR model, we incorporate a mobility-adjusted distance weight matrix where travel mobility is used in addition to the spatial adjacency to capture the correlations among local observations. The model residuals suggest that the proposed model achieves a substantial improvement over other benchmark methods in addressing the spatiotemporal nonstationarity. Our results reveal that the impacts of social-demographic and human activity variables present significant spatiotemporal heterogeneity. In particular, a 1% increase in population density may lead to 0.63% and 0.71% more daily cases and deaths, and a 1% increase in the mean commuting time may result in 0.22% and 0.95% increases in daily cases and deaths. Although increased human activities will, in general, intensify the disease outbreak, we report that the effects of grocery and pharmacy-related activities are insignificant in areas with high population density. And activities at the workplace and public transit are found to either increase or decrease the number of cases and deaths, depending on particular locations. The results of our study establish a quantitative framework for identifying influencing factors during a disease outbreak, and the obtained insights may have significant implications in guiding the policy-making against infectious diseases.