Do you want to publish a course? Click here

Valley Hall Effect and Nonlocal Transport in Strained Graphene

135   0   0.0 ( 0 )
 Added by Chunli Huang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene subject to high levels of shear strain leads to strong pseudo-magnetic fields resulting in the emergence of Landau levels. Here we show that, with modest levels of strain, graphene can also sustain a classical valley hall effect (VHE) that can be detected in nonlocal transport measurements. We provide a theory of the strain-induced VHE starting from the quantum Boltzmann equation. This allows us to show that, averaging over short-range impurity configurations destroys quantum coherence between valleys, leaving the elastic scattering time and inter-valley scattering rate as the only parameters characterizing the transport theory. Using the theory, we compute the nonlocal resistance of a Hall bar device in the diffusive regime. Our theory is also relevant for the study of moderate strain effects in the (nonlocal) transport properties of other two-dimensional materials and van der Walls heterostructures.



rate research

Read More

Recent studies have shown that moir{e} flat bands in a twisted bilayer graphene(TBG) can acquire nontrivial Berry curvatures when aligned with hexagonal boron nitride substrate [1, 2], which can be manifested as a correlated Chern insulator near the 3/4 filling [3, 4]. In this work, we show that the large Berry curvatures in the moir{e} bands lead to strong nonlinear Hall(NLH) effect in a strained TBG with general filling factors. Under a weak uniaxial strain $sim 0.1%$, the Berry curvature dipole which characterizes the nonlinear Hall response can be as large as $sim$ 200{AA}, exceeding the values of all previously known nonlinear Hall materials [5-14] by two orders of magnitude. The dependence of the giant NLH effect as a function of electric gating, strain and twist angle is further investigated systematically. Importantly, we point out that the giant NLH effect appears generically for twist angle near the magic angle due to the strong susceptibility of nearly flat moir{e} bands to symmetry breaking induced by strains. Our results establish TBG as a practical platform for tunable NLH effect and novel transport phenomena driven by nontrivial Berry phases.
Gapped graphene has been proposed to be a good platform to observe the valley Hall effect, a transport phenomenon involving the flow of electrons that are characterized by different valley indices. In the present work, we show that this phenomenon is better described as an instance of the orbital Hall effect, where the ambiguous valley indices are replaced by a physical quantity, the orbital magnetic moment, which can be defined uniformly over the entire Brillouin zone. This description removes the arbitrariness in the choice of arbitrary cut-off for the valley-restricted integrals in the valley Hall conductivity, as the conductivity in the orbital Hall effect is now defined as the Brillouin zone integral of a new quantity, called the orbital Berry curvature. This reformulation in terms of OHE provides the direct explanation to the accumulated opposite orbital moments at the edges of the sample, observed in previous Kerr rotation measurements.
We study the electronic structures and topological properties of $(M+N)$-layer twisted graphene systems. We consider the generic situation that $N$-layer graphene is placed on top of the other $M$-layer graphene, and is twisted with respect to each other by an angle $theta$. In such twisted multilayer graphene (TMG) systems, we find that there exists two low-energy flat bands for each valley emerging from the interface between the $M$ layers and the $N$ layers. These two low-energy bands in the TMG system possess valley Chern numbers that are dependent on both the number of layers and the stacking chiralities. In particular, when the stacking chiralities of the $M$ layers and $N$ layers are opposite, the total Chern number of the two low-energy bands for each valley equals to $pm(M+N-2)$ (per spin). If the stacking chiralities of the $M$ layers and the $N$ layers are the same, then the total Chern number of the two low-energy bands for each valley is $pm(M-N)$ (per spin). The valley Chern numbers of the low-energy bands are associated with large, valley-contrasting orbital magnetizations, suggesting the possible existence of orbital ferromagnetism and anomalous Hall effect once the valley degeneracy is lifted either externally by a weak magnetic field or internally by Coulomb interaction through spontaneous symmetry breaking.
We report on the emergence of bulk, valley-polarized currents in graphene-based devices, driven by spatially varying regions of broken sublattice symmetry, and revealed by non-local resistance ($R_mathrm{NL}$) fingerprints. By using a combination of quantum transport formalisms, giving access to bulk properties as well as multi-terminal device responses, the presence of a non-uniform local bandgap is shown to give rise to valley-dependent scattering and a finite Fermi surface contribution to the valley Hall conductivity, related to characteristics of $R_mathrm{NL}$. These features are robust against disorder and provide a plausible interpretation of controversial experiments in graphene/hBN superlattices. Our findings suggest both an alternative mechanism for the generation of valley Hall effect in graphene, and a route towards valley-dependent electron optics, by materials and device engineering.
154 - Jiale Yuan , Han Cai , Congjun Wu 2021
Two dimensional lattices are an important stage for studying many aspects of quantum physics, in particular the topological phases. The valley Hall and anomalous Hall effects are two representative topological phenomena. Here we show that they can be unified in a strained honeycomb lattice, where the hopping strengths between neighboring sites are designed by mimicking those between the Fock states in a three-mode Jaynes-Cummings model. Such a strain induces an effective magnetic field which results in quantized Landau levels. The eigenstates in the zeroth Landau level can be represented by the eigenstates of a large pseudo-spin. We find that the valley Hall current and the chiral edge current in the Haldane model correspond to the spin precession around different axes. Our study sheds light on connection between seemingly unrelated topological phases in condensed matter physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا