Do you want to publish a course? Click here

Reference-Aware Language Models

120   0   0.0 ( 0 )
 Added by Zichao Yang
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We propose a general class of language models that treat reference as an explicit stochastic latent variable. This architecture allows models to create mentions of entities and their attributes by accessing external databases (required by, e.g., dialogue generation and recipe generation) and internal state (required by, e.g. language models which are aware of coreference). This facilitates the incorporation of information that can be accessed in predictable locations in databases or discourse context, even when the targets of the reference may be rare words. Experiments on three tasks shows our model variants based on deterministic attention.



rate research

Read More

Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Many existing works for text summarization are generally evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.
As voice assistants become more ubiquitous, they are increasingly expected to support and perform well on a wide variety of use-cases across different domains. We present a domain-aware rescoring framework suitable for achieving domain-adaptation during second-pass rescoring in production settings. In our framework, we fine-tune a domain-general neural language model on several domains, and use an LSTM-based domain classification model to select the appropriate domain-adapted model to use for second-pass rescoring. This domain-aware rescoring improves the word error rate by up to 2.4% and slot word error rate by up to 4.1% on three individual domains -- shopping, navigation, and music -- compared to domain general rescoring. These improvements are obtained while maintaining accuracy for the general use case.
Many facts come with an expiration date, from the name of the President to the basketball team Lebron James plays for. But language models (LMs) are trained on snapshots of data collected at a specific moment in time, and this can limit their utility, especially in the closed-book setting where the pretraining corpus must contain the facts the model should memorize. We introduce a diagnostic dataset aimed at probing LMs for factual knowledge that changes over time and highlight problems with LMs at either end of the spectrum -- those trained on specific slices of temporal data, as well as those trained on a wide range of temporal data. To mitigate these problems, we propose a simple technique for jointly modeling text with its timestamp. This improves memorization of seen facts from the training time period, as well as calibration on predictions about unseen facts from future time periods. We also show that models trained with temporal context can be efficiently ``refreshed as new data arrives, without the need for retraining from scratch.
Simple reference games are of central theoretical and empirical importance in the study of situated language use. Although language provides rich, compositional truth-conditional semantics to facilitate reference, speakers and listeners may sometimes lack the overall lexical and cognitive resources to guarantee successful reference through these means alone. However, language also has rich associational structures that can serve as a further resource for achieving successful reference. Here we investigate this use of associational information in a setting where only associational information is available: a simplified version of the popular game Codenames. Using optimal experiment design techniques, we compare a range of models varying in the type of associative information deployed and in level of pragmatic sophistication against human behavior. In this setting, we find that listeners behavior reflects direct bigram collocational associations more strongly than word-embedding or semantic knowledge graph-based associations and that there is little evidence for pragmatically sophisticated behavior by either speakers or listeners of the type that might be predicted by recursive-reasoning models such as the Rational Speech Acts theory. These results shed light on the nature of the lexical resources that speakers and listeners can bring to bear in achieving reference through associative meaning alone.
We introduce functorial language models: a principled way to compute probability distributions over word sequences given a monoidal functor from grammar to meaning. This yields a method for training categorical compositional distributional (DisCoCat) models on raw text data. We provide a proof-of-concept implementation in DisCoPy, the Python toolbox for monoidal categories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا