No Arabic abstract
Simple reference games are of central theoretical and empirical importance in the study of situated language use. Although language provides rich, compositional truth-conditional semantics to facilitate reference, speakers and listeners may sometimes lack the overall lexical and cognitive resources to guarantee successful reference through these means alone. However, language also has rich associational structures that can serve as a further resource for achieving successful reference. Here we investigate this use of associational information in a setting where only associational information is available: a simplified version of the popular game Codenames. Using optimal experiment design techniques, we compare a range of models varying in the type of associative information deployed and in level of pragmatic sophistication against human behavior. In this setting, we find that listeners behavior reflects direct bigram collocational associations more strongly than word-embedding or semantic knowledge graph-based associations and that there is little evidence for pragmatically sophisticated behavior by either speakers or listeners of the type that might be predicted by recursive-reasoning models such as the Rational Speech Acts theory. These results shed light on the nature of the lexical resources that speakers and listeners can bring to bear in achieving reference through associative meaning alone.
Scaling existing applications and solutions to multiple human languages has traditionally proven to be difficult, mainly due to the language-dependent nature of preprocessing and feature engineering techniques employed in traditional approaches. In this work, we empirically investigate the factors affecting language-independent models built with multilingual representations, including task type, language set and data resource. On two most representative NLP tasks -- sentence classification and sequence labeling, we show that language-independent models can be comparable to or even outperforms the models trained using monolingual data, and they are generally more effective on sentence classification. We experiment language-independent models with many different languages and show that they are more suitable for typologically similar languages. We also explore the effects of different data sizes when training and testing language-independent models, and demonstrate that they are not only suitable for high-resource languages, but also very effective in low-resource languages.
We propose a general class of language models that treat reference as an explicit stochastic latent variable. This architecture allows models to create mentions of entities and their attributes by accessing external databases (required by, e.g., dialogue generation and recipe generation) and internal state (required by, e.g. language models which are aware of coreference). This facilitates the incorporation of information that can be accessed in predictable locations in databases or discourse context, even when the targets of the reference may be rare words. Experiments on three tasks shows our model variants based on deterministic attention.
Biomedical knowledge graphs (KGs) hold rich information on entities such as diseases, drugs, and genes. Predicting missing links in these graphs can boost many important applications, such as drug design and repurposing. Recent work has shown that general-domain language models (LMs) can serve as soft KGs, and that they can be fine-tuned for the task of KG completion. In this work, we study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction. We evaluate several domain-specific LMs, fine-tuning them on datasets centered on drugs and diseases that we represent as KGs and enrich with textual entity descriptions. We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance. Finally, we demonstrate the advantage of LM models in the inductive setting with novel scientific entities. Our datasets and code are made publicly available.
Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of~citet{Bengio2003ANP}, which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLMs local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.
A growing number of state-of-the-art transfer learning methods employ language models pretrained on large generic corpora. In this paper we present a conceptually simple and effective transfer learning approach that addresses the problem of catastrophic forgetting. Specifically, we combine the task-specific optimization function with an auxiliary language model objective, which is adjusted during the training process. This preserves language regularities captured by language models, while enabling sufficient adaptation for solving the target task. Our method does not require pretraining or finetuning separate components of the network and we train our models end-to-end in a single step. We present results on a variety of challenging affective and text classification tasks, surpassing well established transfer learning methods with greater level of complexity.