Do you want to publish a course? Click here

Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II

157   0   0.0 ( 0 )
 Added by Gaku Mitsuka
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study non-standard neutrino interactions as an example of physics beyond the standard model using atmospheric neutrino data collected during the Super-Kamiokande I(1996-2001) and II(2003-2005) periods. We focus on flavor-changing-neutral-currents (FCNC), which allow neutrino flavor transitions via neutral current interactions, and effects which violate lepton non-universality (NU) and give rise to different neutral-current interaction-amplitudes for different neutrino flavors. We obtain a limit on the FCNC coupling parameter, varepsilon_{mu tau}, |varepsilon_{mu tau}|<1.1 x 10^{-2} at 90%C.L. and various constraints on other FCNC parameters as a function of the NU coupling, varepsilon_{e e}. We find no evidence of non-standard neutrino interactions in the Super-Kamiokande atmospheric data.



rate research

Read More

We present a search for non-zero theta_{13} and deviations of sin^2 theta_{23} from 0.5 in the oscillations of atmospheric neutrino data from Super-Kamiokande -I, -II, and -III. No distortions of the neutrino flux consistent with non-zero theta_{13} are found and both neutrino mass hierarchy hypotheses are in agreement with the data. The data are best fit at Delta m^2 = 2.1 x 10^-3 eV^2, sin^2 theta_{13} = 0.0, and sin^2 theta_{23} =0.5. In the normal (inverted) hierarchy theta_{13} and Delta m^2 are constrained at the one-dimensional 90% C.L. to sin^2 theta_{13} < 0.04 (0.09) and 1.9 (1.7) x 10^-3 < Delta m^2 < 2.6 (2.7) x 10^-3 eV^2. The atmospheric mixing angle is within 0.407 <= sin^2 theta_{23} <= 0.583 at 90% C.L.
An analysis of atmospheric neutrino data from all four run periods of superk optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for $Delta m^2_{32}$, $sin^2 theta_{23}$, $sin^2 theta_{13}$ and $delta_{CP}$ are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses based on atmospheric neutrino data alone. Additional constraints from reactor data on $theta_{13}$ and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.5% and 94.5% based on the combined result.
While neutrino physics enters precision era, several important unknowns remain. Atmospheric neutrinos allow to simultaneously test key oscillation parameters, with Super-Kamiokande experiment playing a central role. We discuss results from atmospheric neutrino oscillation analysis of the full dataset from Super-Kamiokande I-IV phases. Further, we discuss tests of non-standard neutrino interactions with atmospheric neutrinos in Super-Kamiokande.
Using 5,326 days of atmospheric neutrino data, a search for atmospheric tau neutrino appearance has been performed in the Super-Kamiokande experiment. Super-Kamiokande measures the tau normalization to be 1.47$pm$0.32 under the assumption of normal neutrino hierarchy, relative to the expectation of unity with neutrino oscillation. The result excludes the hypothesis of no-tau-appearance with a significance level of 4.6$sigma$. The inclusive charged-current tau neutrino cross section averaged by the tau neutrino flux at Super-Kamiokande is measured to be $(0.94pm0.20)times 10^{-38}$ cm$^{2}$. The measurement is consistent with the Standard Model prediction, agreeing to within 1.5$sigma$.
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energy range, $E in [1,20]$ GeV and zenith angle range, $cos theta in [-1,0]$. We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range $E in [1,10]$ GeV for two different detector configurations - a magnetized iron calorimeter and an unmagnetized liquid Argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics. As an application, we discuss how NSI parameter, $epsilon_{mutau}$ impacts the determination of the correct octant of $theta_{23}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا