Do you want to publish a course? Click here

A Scanning Hall Probe Microscope for high resolution, large area, variable height Magnetic Field Imaging

430   0   0.0 ( 0 )
 Added by Klaus Hasselbach
 Publication date 2016
  fields Physics
and research's language is English
 Authors Gorky Shaw




Ask ChatGPT about the research

We present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions, with a scan resolution of 0.1 $mu$m. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 $mu$m have been developed. A minimum probe-sample distance textless{} 2 $mu$m has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-systems. * [email protected].; Present address:



rate research

Read More

242 - Thomas Quaglio 2012
We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the displacement of a sample below the probe over several hundred microns at very low temperature, without excessive heating. Atomic force microscopy based on a tuning fork resonator probe is used for cryogenic precise alignment of the tip with an individual device. We demonstrate the local tunneling spectroscopy of a hybrid Josephson junction as a function of its current bias.
Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridisation of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The colour and brightness in such images are used here to identify mono- and few-layer crystals, and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in mechanically exfoliated flakes as well as a function of the twist angle in atomic layers grown by chemical vapour deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterisation of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.
In the last decade, detecting spin dynamics at the atomic scale has been enabled by combining techniques like electron spin resonance (ESR) or pump-probe spectroscopy with scanning tunneling microscopy (STM). Here, we demonstrate an ultra-high vacuum (UHV) STM operational at milliKelvin (mK) and in a vector magnetic field capable of both ESR and pump-probe spectroscopy. By implementing GHz compatible cabling, we achieve appreciable RF amplitudes at the junction while maintaining mK base temperature. We demonstrate the successful operation of our setup by utilizing two experimental ESR modes (frequency sweep and magnetic field sweep) on an individual TiH molecule on MgO/Ag(100) and extract the effective g-factor. We trace the ESR transitions down to MHz into an unprecedented low frequency band enabled by the mK base temperature. We also implement an all-electrical pump-probe scheme based on waveform sequencing suited for studying dynamics down to the nanoseconds range. We benchmark our system by detecting the spin relaxation time T1 of individual Fe atoms on MgO/Ag(100) and note a field strength and orientation dependent relaxation time.
The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQUID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems.
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Gottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا