Do you want to publish a course? Click here

Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam

114   0   0.0 ( 0 )
 Added by Armin Feist
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Gottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.



rate research

Read More

In the quest for dynamic multimodal probing of a materials structure and functionality, it is critical to be able to quantify the chemical state on the atomic and nanoscale using element specific electronic and structurally sensitive tools such as electron energy loss spectroscopy (EELS). Ultrafast EELF, with combined energy, time, and spatial resolution in a transmission electron microscope, has recently enabled transformative studies of photo excited nanostructure evolution and mapping of evanescent electromagnetic fields. This article aims to describe the state of the art experimental techniques in this emerging field and its major uses and future applications.
The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (< 100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations relies on tools that combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently, phonons and collective plasmon resonances can be imaged in nanostructures with sub-nm and 10s meV space/energy resolution using state-of-the-art energy-filtered transmission electron microscopy (TEM), but only under static conditions, while fs-resolved measurements are common but lack spatial or energy resolution. Here, we demonstrate a new method of spectrally resolved photon-induced near-field electron microscopy (SRPINEM) that allows us to obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution determined by the laser linewidth (20 meV in this work), and not limited by electron beam and spectrometer energy spreading. This technique can be extended to any optically-accessible low-energy mode, thus pushing TEM to a previously inaccessible spectral domain with an unprecedented combination of space, energy and temporal resolution.
The motion of electrons in or near solids, liquids and gases can be tracked by forcing their ejection with attosecond x-ray pulses, derived from femtosecond lasers. The momentum of these emitted electrons carries the imprint of the electronic state. Aberration corrected transmission electron microscopes have observed individual atoms, and have sufficient energy sensitivity to quantify atom bonding and electronic configurations. Recent developments in ultrafast electron microscopy and diffraction indicate that spatial and temporal information can be collected simultaneously. In the present work, we push the capability of femtosecond transmission electron microscopy (fs-TEM) towards that of the state of the art in ultrafast lasers and electron microscopes. This is anticipated to facilitate unprecedented elucidation of physical, chemical and biological structural dynamics on electronic time and length scales. The fs-TEM numerically studied employs a nanotip source, electrostatic acceleration to 70 keV, magnetic lens beam transport and focusing, a condenser-objective around the sample and a terahertz temporal compressor, including space charge effects during propagation. With electron emission equivalent to a 20 fs laser pulse, we find a spatial resolution below 10 nm and a temporal resolution of below 10 fs will be feasible for pulses comprised of on average 20 electrons. The influence of a transverse electric field at the sample is modelled, indicating that a field of 1 V/$mu$m can be resolved.
We use time-resolved molecular orbital mapping to explore fundamental processes of excited wave packets and charge transfer dynamics in organic films on femtosecond time scales. We investigate a bilayer pentacene film on Ag(110) by optical laser pump and FEL probe experiments. From the angle-resolved photoemission signal, we obtain time-dependent momentum maps of the molecular valence states that can be related to their molecular initial states by simulations of the involved photoemission matrix elements. We discover a state above the Fermi edge that is temporarily occupied after optical excitation. The wave function of this state is imaged and identified as a transient charge transfer exciton extending over two neighboring molecules.
Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM$_{110}$ deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of $814pm2$ pA, the root-mean-square transverse normalized emittance of the electron pulses is $varepsilon_{n,x}=(2.7pm0.1)cdot 10^{-12}$ m rad in the direction parallel to the streak of the cavity, and $varepsilon_{n,y}=(2.5pm0.1)cdot 10^{-12}$ m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is $varepsilon_{n,x}=varepsilon_{n,y}=(2.5pm0.1)cdot 10^{-12}$ m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of $0.95pm0.05$ eV has been measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا