Do you want to publish a course? Click here

Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

155   0   0.0 ( 0 )
 Added by Daniel Huber
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonicscite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near-optimal sources of indistinguishable single photons. However, their performances as sources of entangled-photon pairs are in comparison still modest. Experiments on conventional Stranski-Krastanow InGaAs quantum dots have reported non-optimal levels of entanglement and indistinguishability of the emitted photons. For applications such as entanglement teleportation and quantum repeaters, both criteria have to be met simultaneously. In this work, we show that this is possible focusing on a system that has received limited attention so far: GaAs quantum dots grown via droplet etching. Using a two-photon resonant excitation scheme, we demonstrate that these quantum dots can emit triggered polarization-entangled photons with high purity (g^(2)(0)=0.002 +/-0.002), high indistinguishability (0.93 +/-0.07) and high entanglement fidelity (0.94 +/-0.01). Such unprecedented degree of entanglement, which in contrast to InGaAs can theoretically reach near-unity values, allows Bells inequality (2.64 +/-0.01) to be violated without the aid of temporal or spectral filtering. Our results show that if quantum-dot entanglement resources are to be used for future quantum technologies, GaAs might be the system of choice.



rate research

Read More

Semiconductor quantum dots are converging towards the demanding requirements of photonic quantum technologies. Among different systems, quantum dots with dimensions exceeding the free-exciton Bohr radius are appealing because of their high oscillator strengths. While this property has received much attention in the context of cavity quantum electrodynamics, little is known about the degree of indistinguishability of single photons consecutively emitted by such dots and on the proper excitation schemes to achieve high indistinguishability. A prominent example is represented by GaAs quantum dots obtained by local droplet etching, which recently outperformed other systems as triggered sources of entangled photon pairs. On these dots, we compare different single-photon excitation mechanisms, and we find (i) a phonon bottleneck and poor indistinguishability for conventional excitation via excited states and (ii) photon indistinguishablilities above 90% for both strictly resonant and for incoherent acoustic- and optical-phonon-assisted excitation. Among the excitation schemes, optical phonon-assisted excitation enables straightforward laser rejection without a compromise on the source brightness together with a high photon indistinguishability.
162 - T. Kuroda , T. Mano , N. Ha 2013
An ideal source of entangled photon pairs combines the perfect symmetry of an atom with the convenient electrical trigger of light sources based on semiconductor quantum dots. We create a naturally symmetric quantum dot cascade that emits highly entangled photon pairs on demand. Our source consists of strain-free GaAs dots self-assembled on a triangular symmetric (111)A surface. The emitted photons strongly violate Bells inequality and reveal a fidelity to the Bell state as high as 86 (+-2) % without postselection. This result is an important step towards scalable quantum-communication applications with efficient sources.
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polarization entangled photon pairs substantially alleviates the security threads while allowing for basically arbitrary transmission distances when embedded in quantum repeater schemes. Semiconductor quantum dots are capable of emitting highly entangled photon pairs with ultra-low multi-pair emission probability even at maximum brightness. Here we report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1). For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By embedding them in state-of-the-art photonic structures, key generation rates in the Gbit/s range are at reach.
In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of consecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.
The generation and long-haul transmission of highly entangled photon pairs is a cornerstone of emerging photonic quantum technologies, with key applications such as quantum key distribution and distributed quantum computing. However, a natural limit for the maximum transmission distance is inevitably set by attenuation in the medium. A network of quantum repeaters containing multiple sources of entangled photons would allow to overcome this limit. For this purpose, the requirements on the sources brightness and the photon pairs degree of entanglement and indistinguishability are stringent. Despite the impressive progress made so far, a definitive scalable photon source fulfilling such requirements is still being sought for. Semiconductor quantum dots excel in this context as sub-poissonian sources of polarization entangled photon pairs. In this work we present the state-of-the-art set by GaAs based quantum dots and use them as a benchmark to discuss the challenges to overcome towards the realization of practical quantum networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا