Do you want to publish a course? Click here

Symmetric quantum dots as efficient sources of highly entangled photons

213   0   0.0 ( 0 )
 Added by Takashi Kuroda
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

An ideal source of entangled photon pairs combines the perfect symmetry of an atom with the convenient electrical trigger of light sources based on semiconductor quantum dots. We create a naturally symmetric quantum dot cascade that emits highly entangled photon pairs on demand. Our source consists of strain-free GaAs dots self-assembled on a triangular symmetric (111)A surface. The emitted photons strongly violate Bells inequality and reveal a fidelity to the Bell state as high as 86 (+-2) % without postselection. This result is an important step towards scalable quantum-communication applications with efficient sources.



rate research

Read More

State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polarization entangled photon pairs substantially alleviates the security threads while allowing for basically arbitrary transmission distances when embedded in quantum repeater schemes. Semiconductor quantum dots are capable of emitting highly entangled photon pairs with ultra-low multi-pair emission probability even at maximum brightness. Here we report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1). For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By embedding them in state-of-the-art photonic structures, key generation rates in the Gbit/s range are at reach.
The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonicscite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near-optimal sources of indistinguishable single photons. However, their performances as sources of entangled-photon pairs are in comparison still modest. Experiments on conventional Stranski-Krastanow InGaAs quantum dots have reported non-optimal levels of entanglement and indistinguishability of the emitted photons. For applications such as entanglement teleportation and quantum repeaters, both criteria have to be met simultaneously. In this work, we show that this is possible focusing on a system that has received limited attention so far: GaAs quantum dots grown via droplet etching. Using a two-photon resonant excitation scheme, we demonstrate that these quantum dots can emit triggered polarization-entangled photons with high purity (g^(2)(0)=0.002 +/-0.002), high indistinguishability (0.93 +/-0.07) and high entanglement fidelity (0.94 +/-0.01). Such unprecedented degree of entanglement, which in contrast to InGaAs can theoretically reach near-unity values, allows Bells inequality (2.64 +/-0.01) to be violated without the aid of temporal or spectral filtering. Our results show that if quantum-dot entanglement resources are to be used for future quantum technologies, GaAs might be the system of choice.
The generation and long-haul transmission of highly entangled photon pairs is a cornerstone of emerging photonic quantum technologies, with key applications such as quantum key distribution and distributed quantum computing. However, a natural limit for the maximum transmission distance is inevitably set by attenuation in the medium. A network of quantum repeaters containing multiple sources of entangled photons would allow to overcome this limit. For this purpose, the requirements on the sources brightness and the photon pairs degree of entanglement and indistinguishability are stringent. Despite the impressive progress made so far, a definitive scalable photon source fulfilling such requirements is still being sought for. Semiconductor quantum dots excel in this context as sub-poissonian sources of polarization entangled photon pairs. In this work we present the state-of-the-art set by GaAs based quantum dots and use them as a benchmark to discuss the challenges to overcome towards the realization of practical quantum networks.
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.
We present rigorous and intuitive master equation models to study on-demand single photon sources from pulse-excited quantum dots coupled to cavities. We consider three methods of source excitation: resonant pi-pulse, off-resonant phonon-assisted inversion, and two-photon excitation of a biexciton-exciton cascade, and investigate the effect of the pulse excitation process on the quantum indistinguishability, efficiency, and purity of emitted photons. By explicitly modelling the time-dependent pulsed excitation process in a manner which captures non-Markovian effects associated with coupling to photon and phonon reservoirs, we find that photons of near-unity indistinguishability can be emitted with over 90% efficiency for all these schemes, with the off-resonant schemes not necessarily requiring polarization filtering due to the frequency separation of the excitation pulse, and allowing for very high single photon purities. Furthermore, the off-resonant methods are shown to be robust over certain parameter regimes, with less stringent requirements on the excitation pulse duration in particular. We also derive a semi-analytical simplification of our master equation for the off-resonant drive, which gives insight into the important role that exciton-phonon decoupling for a strong drive plays in the off-resonant phonon-assisted inversion process
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا