Do you want to publish a course? Click here

Single photon superradiance and cooperative Lamb shift in an optoelectronic device

145   0   0.0 ( 0 )
 Added by Angela Vasanelli
 Publication date 2016
  fields Physics
and research's language is English
 Authors Giulia Frucci




Ask ChatGPT about the research

Single photon superradiance is a strong enhancement of spontaneous emission appearing when a single excitation is shared between a large number of two-level systems. This enhanced rate can be accompanied by a shift of the emission frequency, the cooperative Lamb shift, issued from the exchange of virtual photons between the emitters. In this work we present a semiconductor optoelectronic device allowing the observation of these two phenomena at room temperature. We demonstrate experimentally and theoretically that plasma oscillations in spatially separated quantum wells interact through real and virtual photon exchange. This gives rise to a superradiant mode displaying a large cooperative Lamb shift.



rate research

Read More

Colour centres with long-lived spins are established platforms for quantum sensing and quantum information applications. Colour centres exist in different charge states, each of them with distinct optical and spin properties. Application to quantum technology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the colour centre in an integrated silicon carbide opto-electronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active colour centres for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
157 - K. Usami , A. Naesby , T. Bagci 2010
Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.
We use quantum detector tomography to investigate the detection mechanism in WSi nanowire superconducting single photon detectors (SSPDs). To this purpose, we fabricated a 250nm wide and 250nm long WSi nanowire and measured its response to impinging photons with wavelengths ranging from $lambda$ = 900 nm to $lambda$ = 1650 nm. Tomographic measurements show that the detector response depends on the total excitation energy only. Moreover, for energies Et > 0.8eV the current energy relation is linear, similar to what was observed in NbN nanowires, whereas the current-energy relation deviates from linear behaviour for total energies below 0.8eV.
163 - Dirk Heinze , Artur Zrenner , 2014
Sources of single photons are key elements in the study of basic quantum optical concepts and applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their straight forward integrability in semiconductor based on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon emission event is part of a cascaded biexciton-exciton emission scheme. Important properties of the emitted photon such as polarization and time of emission are either probabilistic in nature or pre-determined by electronic properties of the system. In this work, we study the direct two-photon emission from the biexciton. We show that emission through this higher-order transition provides a much more versatile approach to generate a single photon. In the scheme we propose, the two-photon emission from the biexciton is enabled by a laser field (or laser pulse) driving the system into a virtual state inside the band gap. From this intermediate virtual state, the single photon of interest is then spontaneously emitted. Its properties are determined by the driving laser pulse, enabling all-optical on-the-fly control of polarization state, frequency, and time of emission of the photon.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا