Do you want to publish a course? Click here

Magnetic cycles in a dynamo simulation of fully convective M-star Proxima Centauri

407   0   0.0 ( 0 )
 Added by Rakesh Yadav K.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period $lesssim 20$ days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone which drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the `activity cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

rate research

Read More

338 - Benjamin P. Brown 2011
Young solar-type stars rotate rapidly and many are magnetically active; some undergo magnetic cycles similar to the 22-year solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the 3D MHD anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at 5 times the current solar rotation rate. Striking global-scale magnetic wreaths appear in the midst of the turbulent convection zone and show rich time-dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day time scale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an $Omega$-effect, while the mean poloidal fields are built by turbulent correlations which are not necessarily well represented by a simple $alpha$-effect. During a reversal the magnetic wreaths propagate towards the polar regions, and this appears to arise from a poleward propagating dynamo wave. The primary response in the convective flows involves the axisymmetric differential rotation which shows variations associated with the poleward propagating magnetic wreaths. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface. [abridged]
We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within the convection zone, with opposite polarities in the northern and southern hemispheres. Throughout most of the cycle, the magnetic helicity in these bands is negative in the northern hemisphere and positive in the southern hemisphere. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroidal band interactions and helicity reversals.
70 - Petri J. Kapyla 2020
(abridged) Context: Main-sequence late-type stars with masses less than $0.35 M_odot$ are fully convective. Aims: The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods: Three-dimensional hydrodynamic and magnetohydrodynamic numerical simulations with a star-in-a-box model, where a spherical star is immersed inside of a Cartesian cube, are used. The model corresponds to a $0.2M_odot$ M5 dwarf. Rotation periods ($P_{rm rot}$) between 4.3 and 430 days are explored. Results: The slowly rotating model with $P_{rm rot}=430$ days produces anti-solar differential rotation with a slow equator and fast poles, along with predominantly axisymmetric quasi-steady large-scale magnetic fields. For intermediate rotation ($P_{rm rot}=144$ and $43$ days) differential rotation is solar-like (fast equator, slow poles) and large-scale magnetic fields are mostly axisymmetric and either quasi-stationary or cyclic. The latter occurs in a similar parameter regime as in other numerical studies in spherical shells, and the cycle period is similar to observed cycles in fully convective stars with comparable $P_{rm rot}$. In the rapid rotation regime the differential rotation is weak and the large-scale magnetic fields are increasingly non-axisymmetric with a dominating $m=1$ mode. This large-scale non-axisymmetric field also exhibits azimuthal dynamo waves. Conclusions: The results of the star-in-a-box models agree with simulations of partially convective late-type stars in spherical shells in that the transitions in differential rotation and dynamo regimes occur at similar rotational regimes in terms of the Coriolis (inverse Rossby) number. This similarity between partially and fully convective stars suggests that the processes generating differential rotation and large-scale magnetism are insensitive to the geometry of the star.
The Sun, aside from its eleven year sunspot cycle is additionally subject to long term variation in its activity. In this work we analyse a solar-like convective dynamo simulation, containing approximately 60 magnetic cycles, exhibiting equatorward propagation of the magnetic field, multiple frequencies, and irregular variability, including a missed cycle and complex parity transitions between dipolar and quadrupolar modes. We compute the turbulent transport coefficients, describing the effects of the turbulent velocity field on the mean magnetic field, using the test-field method. The test-field analysis provides a plausible explanation of the missing cycle in terms of the reduction of $alpha_{phiphi}$ in advance of the reduced surface activity, and enhanced downward turbulent pumping during the event to confine some of the magnetic field at the bottom of the convection zone, where local maximum of magnetic energy is observed during the event. At the same time, however, a quenching of the turbulent magnetic diffusivities is observed, albeit differently distributed in depth compared to the other transport coefficients. Therefore, dedicated mean-field modelling is required for verification.
We report the detection of a large-scale magnetic field at the surface of the slowly-rotating fully-convective M dwarf Proxima Centauri. Ten circular polarization spectra, collected from April to July 2017 with the HARPS-Pol spectropolarimeter, exhibit rotationally-modulated Zeeman signatures suggesting a stellar rotation period of $89.8 pm 4.0$ d. Using Zeeman-Doppler Imaging, we invert the circular polarization spectra into a surface distribution of the large-scale magnetic field. We find that Proxima Cen hosts a large-scale magnetic field of typical strength 200 G, whose topology is mainly poloidal, and moderately axisymmetric, featuring, in particular, a dipole component of 135 G tilted at 51$^{circ}$ to the rotation axis. The large-scale magnetic flux is roughly 3 times smaller than the flux measured from the Zeeman broadening of unpolarized lines, which suggests that the underlying dynamo is efficient at generating a magnetic field at the largest spatial scales. Our observations occur $sim$1 yr after the maximum of the reported 7 yr-activity cycle of Proxima Cen, which opens the door for the first long-term study of how the large-scale field evolves with the magnetic cycle in a fully-convective very-low-mass star. Finally, we find that Proxima Cens habitable zone planet, Proxima-b, is likely orbiting outside the Alfv`en surface, where no direct magnetic star-planet interactions occur.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا