Do you want to publish a course? Click here

Magnetic Helicity Reversals in a Cyclic Convective Dynamo

189   0   0.0 ( 0 )
 Added by Mark S. Miesch
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within the convection zone, with opposite polarities in the northern and southern hemispheres. Throughout most of the cycle, the magnetic helicity in these bands is negative in the northern hemisphere and positive in the southern hemisphere. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroidal band interactions and helicity reversals.



rate research

Read More

Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to the slow down of the axisymmetric poleward horizontal component. The behavior of this large scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone, where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field, via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.
We consider 2D joint distributions of normalised residual energy $sigma_r(s,t)$ and cross helicity $sigma_c(s,t)$ during one day of Parker Solar Probes (PSPs) first encounter as a function of wavelet scale $s$. The broad features of the distributions are similar to previous observations made by HELIOS in slow solar wind, namely well correlated and fairly Alfvenic, except for a population with negative cross helicity which is seen at shorter wavelet scales. We show that this population is due to the presence of magnetic switchbacks, brief periods where the magnetic field polarity reverses. Such switchbacks have been observed before, both in HELIOS data and in Ulysses data in the polar solar wind. Their abundance and short timescales as seen by PSP in its first encounter is a new observation, and their precise origin is still unknown. By analysing these MHD invariants as a function of wavelet scale we show that MHD waves do indeed follow the local mean magnetic field through switchbacks, with net Elsasser flux propagating inward during the field reversal, and that they therefore must be local kinks in the magnetic field and not due to small regions of opposite polarity on the surface of the Sun. Such observations are important to keep in mind as computing cross helicity without taking into account the effect of switchbacks may result in spurious underestimation of $sigma_c$ as PSP gets closer to the Sun in later orbits.
137 - M. L. DeRosa , A. S. Brun , 2012
The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface magnetic field observed to occur in the solar case.
402 - Benjamin P. Brown 2011
Young solar-type stars rotate rapidly and many are magnetically active; some undergo magnetic cycles similar to the 22-year solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the 3D MHD anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at 5 times the current solar rotation rate. Striking global-scale magnetic wreaths appear in the midst of the turbulent convection zone and show rich time-dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day time scale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an $Omega$-effect, while the mean poloidal fields are built by turbulent correlations which are not necessarily well represented by a simple $alpha$-effect. During a reversal the magnetic wreaths propagate towards the polar regions, and this appears to arise from a poleward propagating dynamo wave. The primary response in the convective flows involves the axisymmetric differential rotation which shows variations associated with the poleward propagating magnetic wreaths. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface. [abridged]
81 - A. Brandenburg 2019
Much work on turbulent three-dimensional dynamos has been done using triply periodic domains, in which there are no magnetic helicity fluxes. Here we present simulations where the turbulent intensity is still nearly homogeneous, but now there is a perfect conductor boundary condition on one end and a vertical field or pseudo-vacuum condition on the other. This leads to migratory dynamo waves. Good agreement with a corresponding analytically solvable alpha^2 dynamo is found. Magnetic helicity fluxes are studied in both types of models. It is found that at moderate magnetic Reynolds numbers, most of the magnetic helicity losses occur at large scales. Whether this changes at even larger magnetic Reynolds numbers, as required for alleviating the catastrophic dynamo quenching problem, remains still unclear.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا