Do you want to publish a course? Click here

Stacked Autoencoders for Medical Image Search

161   0   0.0 ( 0 )
 Added by Hamid Tizhoosh
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Medical images can be a valuable resource for reliable information to support medical diagnosis. However, the large volume of medical images makes it challenging to retrieve relevant information given a particular scenario. To solve this challenge, content-based image retrieval (CBIR) attempts to characterize images (or image regions) with invariant content information in order to facilitate image search. This work presents a feature extraction technique for medical images using stacked autoencoders, which encode images to binary vectors. The technique is applied to the IRMA dataset, a collection of 14,410 x-ray images in order to demonstrate the ability of autoencoders to retrieve similar x-rays given test queries. Using IRMA dataset as a benchmark, it was found that stacked autoencoders gave excellent results with a retrieval error of 376 for 1,733 test images with a compression of 74.61%.



rate research

Read More

Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range dependencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
363 - Yufan He , Dong Yang , Holger Roth 2021
Recently, neural architecture search (NAS) has been applied to automatically search high-performance networks for medical image segmentation. The NAS search space usually contains a network topology level (controlling connections among cells with different spatial scales) and a cell level (operations within each cell). Existing methods either require long searching time for large-scale 3D image datasets, or are limited to pre-defined topologies (such as U-shaped or single-path). In this work, we focus on three important aspects of NAS in 3D medical image segmentation: flexible multi-path network topology, high search efficiency, and budgeted GPU memory usage. A novel differentiable search framework is proposed to support fast gradient-based search within a highly flexible network topology search space. The discretization of the searched optimal continuous model in differentiable scheme may produce a sub-optimal final discrete model (discretization gap). Therefore, we propose a topology loss to alleviate this problem. In addition, the GPU memory usage for the searched 3D model is limited with budget constraints during search. Our Differentiable Network Topology Search scheme (DiNTS) is evaluated on the Medical Segmentation Decathlon (MSD) challenge, which contains ten challenging segmentation tasks. Our method achieves the state-of-the-art performance and the top ranking on the MSD challenge leaderboard.
3D convolution neural networks (CNN) have been proved very successful in parsing organs or tumours in 3D medical images, but it remains sophisticated and time-consuming to choose or design proper 3D networks given different task contexts. Recently, Neural Architecture Search (NAS) is proposed to solve this problem by searching for the best network architecture automatically. However, the inconsistency between search stage and deployment stage often exists in NAS algorithms due to memory constraints and large search space, which could become more serious when applying NAS to some memory and time consuming tasks, such as 3D medical image segmentation. In this paper, we propose coarse-to-fine neural architecture search (C2FNAS) to automatically search a 3D segmentation network from scratch without inconsistency on network size or input size. Specifically, we divide the search procedure into two stages: 1) the coarse stage, where we search the macro-level topology of the network, i.e. how each convolution module is connected to other modules; 2) the fine stage, where we search at micro-level for operations in each cell based on previous searched macro-level topology. The coarse-to-fine manner divides the search procedure into two consecutive stages and meanwhile resolves the inconsistency. We evaluate our method on 10 public datasets from Medical Segmentation Decalthon (MSD) challenge, and achieve state-of-the-art performance with the network searched using one dataset, which demonstrates the effectiveness and generalization of our searched models.
Over the past decade, Deep Convolutional Neural Networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to the inherent inductive biases present in the convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed Transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore Transformer-based solutions and study the feasibility of using Transformer-based network architectures for medical image segmentation tasks. Majority of existing Transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, for medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical applications. To this end, we propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer
Recent advances in deep learning have shown their ability to learn strong feature representations for images. The task of image clustering naturally requires good feature representations to capture the distribution of the data and subsequently differentiate data points from one another. Often these two aspects are dealt with independently and thus traditional feature learning alone does not suffice in partitioning the data meaningfully. Variational Autoencoders (VAEs) naturally lend themselves to learning data distributions in a latent space. Since we wish to efficiently discriminate between different clusters in the data, we propose a method based on VAEs where we use a Gaussian Mixture prior to help cluster the images accurately. We jointly learn the parameters of both the prior and the posterior distributions. Our method represents a true Gaussian Mixture VAE. This way, our method simultaneously learns a prior that captures the latent distribution of the images and a posterior to help discriminate well between data points. We also propose a novel reparametrization of the latent space consisting of a mixture of discrete and continuous variables. One key takeaway is that our method generalizes better across different datasets without using any pre-training or learnt models, unlike existing methods, allowing it to be trained from scratch in an end-to-end manner. We verify our efficacy and generalizability experimentally by achieving state-of-the-art results among unsupervised methods on a variety of datasets. To the best of our knowledge, we are the first to pursue image clustering using VAEs in a purely unsupervised manner on real image datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا