No Arabic abstract
Over the past decade, Deep Convolutional Neural Networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to the inherent inductive biases present in the convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed Transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore Transformer-based solutions and study the feasibility of using Transformer-based network architectures for medical image segmentation tasks. Majority of existing Transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, for medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical applications. To this end, we propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range dependencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
The medical image is characterized by the inter-class indistinction, high variability, and noise, where the recognition of pixels is challenging. Unlike previous self-attention based methods that capture context information from one level, we reformulate the self-attention mechanism from the view of the high-order graph and propose a novel method, namely Hierarchical Attention Network (HANet), to address the problem of medical image segmentation. Concretely, an HA module embedded in the HANet captures context information from neighbors of multiple levels, where these neighbors are extracted from the high-order graph. In the high-order graph, there will be an edge between two nodes only if the correlation between them is high enough, which naturally reduces the noisy attention information caused by the inter-class indistinction. The proposed HA module is robust to the variance of input and can be flexibly inserted into the existing convolution neural networks. We conduct experiments on three medical image segmentation tasks including optic disc/cup segmentation, blood vessel segmentation, and lung segmentation. Extensive results show our method is more effective and robust than the existing state-of-the-art methods.
The CNN-based methods have achieved impressive results in medical image segmentation, but it failed to capture the long-range dependencies due to the inherent locality of convolution operation. Transformer-based methods are popular in vision tasks recently because of its capacity of long-range dependencies and get a promising performance. However, it lacks in modeling local context, although some works attempted to embed convolutional layer to overcome this problem and achieved some improvement, but it makes the feature inconsistent and fails to leverage the natural multi-scale features of hierarchical transformer, which limit the performance of models. In this paper, taking medical image segmentation as an example, we present MISSFormer, an effective and powerful Medical Image Segmentation tranSFormer. MISSFormer is a hierarchical encoder-decoder network and has two appealing designs: 1) A feed forward network is redesigned with the proposed Enhanced Transformer Block, which makes features aligned adaptively and enhances the long-range dependencies and local context. 2) We proposed Enhanced Transformer Context Bridge, a context bridge with the enhanced transformer block to model the long-range dependencies and local context of multi-scale features generated by our hierarchical transformer encoder. Driven by these two designs, the MISSFormer shows strong capacity to capture more valuable dependencies and context in medical image segmentation. The experiments on multi-organ and cardiac segmentation tasks demonstrate the superiority, effectiveness and robustness of our MISSFormer, the exprimental results of MISSFormer trained from scratch even outperforms state-of-the-art methods pretrained on ImageNet, and the core designs can be generalized to other visual segmentation tasks. The code will be released in Github.
Transformer architecture has emerged to be successful in a number of natural language processing tasks. However, its applications to medical vision remain largely unexplored. In this study, we present UTNet, a simple yet powerful hybrid Transformer architecture that integrates self-attention into a convolutional neural network for enhancing medical image segmentation. UTNet applies self-attention modules in both encoder and decoder for capturing long-range dependency at different scales with minimal overhead. To this end, we propose an efficient self-attention mechanism along with relative position encoding that reduces the complexity of self-attention operation significantly from $O(n^2)$ to approximate $O(n)$. A new self-attention decoder is also proposed to recover fine-grained details from the skipped connections in the encoder. Our approach addresses the dilemma that Transformer requires huge amounts of data to learn vision inductive bias. Our hybrid layer design allows the initialization of Transformer into convolutional networks without a need of pre-training. We have evaluated UTNet on the multi-label, multi-vendor cardiac magnetic resonance imaging cohort. UTNet demonstrates superior segmentation performance and robustness against the state-of-the-art approaches, holding the promise to generalize well on other medical image segmentations.
Accurate segmentation of medical images into anatomically meaningful regions is critical for the extraction of quantitative indices or biomarkers. The common pipeline for segmentation comprises regions of interest detection stage and segmentation stage, which are independent of each other and typically performed using separate deep learning networks. The performance of the segmentation stage highly relies on the extracted set of spatial features and the receptive fields. In this work, we propose an end-to-end network, called Trilateral Attention Network (TaNet), for real-time detection and segmentation in medical images. TaNet has a module for region localization, and three segmentation pathways: 1) handcrafted pathway with hand-designed convolutional kernels, 2) detail pathway with regular convolutional kernels, and 3) a global pathway to enlarge the receptive field. The first two pathways encode rich handcrafted and low-level features extracted by hand-designed and regular kernels while the global pathway encodes high-level context information. By jointly training the network for localization and segmentation using different sets of features, TaNet achieved superior performance, in terms of accuracy and speed, when evaluated on an echocardiography dataset for cardiac segmentation. The code and models will be made publicly available in TaNet Github page.