Do you want to publish a course? Click here

Twisted Supersymmetry in a Deformed Wess-Zumino Model in (2+1) Dimensions

111   0   0.0 ( 0 )
 Added by Carlos Palechor
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Non-anticommutative deformations have been studied in the context of supersymmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its important properties, both at the formal algebraic level (e.g., preserving the associativity of the deformed theory) as well as at the physical level (e.g., maintaining renormalizability). The Hopf algebra formalism allows the definition of algebraically consistent deformations of SUSY, but this algebraic consistency does not guarantee that physical models build upon these structures will be consistent from the physical point of view. We will investigate a deformation induced by a Drinfeld twist of the ${cal N}=1$ SUSY algebra in three space-time dimensions. The use of the Hopf algebra formalism allows the construction of deformed ${cal N}=1$ SUSY algebras that should still preserve a deformed version of supersymmetry. We will construct the simplest deformed version of the Wess-Zumino model in this context, but we will show that despite the consistent algebraic structure, the model in question is not invariant under SUSY transformation and is not renormalizable. We will comment on the relation of these results with previous ones discussed in the literature regarding similar four-dimensional constructions.



rate research

Read More

We study dynamical supersymmetry breaking by non perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase diagram by analytical strong-coupling expansions and explicit numerical simulations with Green Function Monte Carlo methods.
84 - Kai Kratzert 2003
We investigate the breakdown of supersymmetry at finite temperature. While it has been proven that temperature always breaks supersymmetry, the nature of this breaking is less clear. On the one hand, a study of the Ward-Takahashi identities suggests a spontaneous breakdown of supersymmetry without the existence of a Goldstino, while on the other hand it has been shown that in any supersymmetric plasma there should exist a massless fermionic collective excitation, the phonino. Aim of this work is to unify these two approaches. For the Wess-Zumino model, it is shown that the phonino exists and contributes to the supersymmetric Ward-Takahashi identities in the right way displaying that supersymmetry is broken spontaneously with the phonino as the Goldstone fermion.
We deform the well-known three dimensional $mathcal{N}=1$ Wess-Zumino model by adding higher derivative operators (Lee-Wick operators) to its action. The effects of these operators are investigated both at the classical and quantum levels.
Supersymmetric lattice Ward-Takahashi identities are investigated perturbatively up to two-loop corrections for super doubler approach of $N=2$ lattice Wess-Zumino models in 1- and 2-dimensions. In this approach notorious chiral fermion doublers are treated as physical particles and momentum conservation is modified in such a way that lattice Leibniz rule is satisfied. The two major difficulties to keep exact lattice supersymmetry are overcome. This formulation defines, however, nonlocal field theory. Nevertheless we confirm that exact supersymmetry on the lattice is realized for all supercharges at the quantum level. Delicate issues of associativity are also discussed.
63 - Jan Troost 2017
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illustrate their interplay with the logarithmic global conformal Ward identities. We compute the four point function for one projective and three typical representations. Three coupled first order Knizhnik-Zamolodchikov equations are integrated consecutively in terms of generalized hypergeometric functions, and we assemble the solutions into a local correlator. Moreover, we prove crossing symmetry of the four point function of four typical representations at generic momenta. Throughout, the map between the gl(1|1) Wess-Zumino-Witten model and symplectic fermions is exploited and extended.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا