No Arabic abstract
We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground state path integral quantum Monte Carlo we numerically compute the R{e}nyi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the R{e}nyi entropy with subsystem size that is expected from conformal field theory, and compute the non-universal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
Calculation of the entropy of an ideal Bose Einstein Condensate (BEC) in a three dimensional trap reveals unusual, previously unrecognized, features of the Canonical Ensemble. It is found that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in the ground state is nonzero. We explain this by considering the correlations between the ground state particles and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of particles obeying quantum statistics. We present results for correlation functions between the ground and excited states in Bose gas, so to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature of the ground state fluctuations.
We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in cite{Ristivojevic} and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tans contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions.
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operational entanglement that is both computationally and experimentally accessible. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most, a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to $10^5$ particles.
Using the Bethe ansatz solution, we analytically study expansionary, magnetic and interacting Gruneisen parameters (GPs) for one-dimensional (1D) Lieb-Liniger and Yang-Gaudin models. These different GPs elegantly quantify the dependences of characteristic energy scales of these quantum gases on the volume, the magnetic field and the interaction strength, revealing the caloric effects resulted from the variations of these potentials. The obtained GPs further confirm an identity which is incurred by the symmetry of the thermal potential. We also present universal scaling behavior of these GPs in the vicinities of the quantum critical points driven by different potentials. The divergence of the GPs not only provides an experimental identification of non-Fermi liquid nature at quantum criticality but also elegantly determine low temperature phases of the quantum gases. Moreover, the pairing and depairing features in the 1D attractive Fermi gases can be captured by the magnetic and interacting GPs, facilitating experimental observation of quantum phase transitions. Our results open to further study the interaction- and magnetic-field-driven quantum refrigeration and quantum heat engine in quantum gases of ultracold atoms.
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, can self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode, and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization, by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott-insulator or a superfluid, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the system is superfluid. These states could be realized in existing experimental setups.