Do you want to publish a course? Click here

On the origin of horseshoes in transitional discs

111   0   0.0 ( 0 )
 Added by Enrico Ragusa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate whether the rings, lopsided features and horseshoes observed at millimetre wavelengths in transitional discs can be explained by the dynamics of gas and dust at the edge of the cavity in circumbinary discs. We use 3D dusty smoothed particle hydrodynamics calculations to show that binaries with mass ratio $q gtrsim 0.04$ drive eccentricity in the central cavity, naturally leading to a crescent-like feature in the gas density, which is accentuated in the mm dust grain population with intensity contrasts in mm-continuum emission of 10 or higher. We perform mock observations to demonstrate that these features closely match those observed by ALMA, suggesting that the origin of rings, dust horseshoes and other non-axisymmetric structures in transition discs can be explained by the presence of massive companions.



rate research

Read More

This work presents a study of two Herbig Ae transitional discs, Oph IRS 48 and HD 169142; which both have reported rings in their dust density distributions. We use Keck-II/NIRC2 adaptive optics imaging observations in the L filter (3.8 micron) to probe the regions of these discs inwards of ~20AU from the star. We introduce our method for investigating these transitional discs, which takes a forward modelling approach: making a model of the disc (using the Monte Carlo radiative transfer code RADMC), convolving it with point-spread functions of calibrator stars, and comparing the convolved models with the observational data. The disc surface density parameters are explored with a Monte Carlo Markov Chain technique. Our analysis recovers emission from both of the discs interior to the well known optically thick walls, modelled as a ring of emission at ~15AU in Oph IRS 48, and ~7AU for HD 169142, and identifies asymmetries in both discs. Given the brightness of the near-symmetric rings compared to the reported companion candidates, we suggest that the reported companion candidates can be interpreted as slightly asymmetric disc emission or illumination.
63 - Aaron C. Boley 2017
Recent observations of HL Tau revealed remarkably detailed structure within the systems circumstellar disc. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disc interactions, condensation fronts, and secular gravitational instabilities. While embedded planets seem to be able to explain some of the major structure in the disc through interactions with gas and dust, the substructure, such as low-contrast rings and bands, are not so easily reproduced. Here, we show that dynamical interactions between three planets (only two of which are modelled) and an initial population of large planetesimals can potentially explain both the major and minor banded features within the system. In this context, the small grains, which are coupled to the gas and reveal the disc morphology, are produced by the collisional evolution of the newly-formed planetesimals, which are ubiquitous in the system and are decoupled from the gas.
Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as Transitional Disks (TD). These objects are thought to be an evolutionary stage between an optically thick disk and optically thin disk. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these disks, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. For our detection limits, we implement a new method of completeness correction using a combination of randomly sampled binary orbits and Bayesian inference. The selected sample of 24 TDs belong to the nearby and young star forming regions: Ophiuchus ($sim$ 130 pc), Taurus-Auriga ($sim$ 140 pc) and IC348 ( $sim$ 220 pc). These regions are suitable to resolve faint stellar companions with moderate to high confidence levels at distances as low as 2 au from the central star. With a total of 31 objects, including 11 known TDs and circumbinary disks from the literature, we have found that a fraction of 0.38 $pm$ 0.09 of the SEDs of these objects are likely due to the tidal interaction between a close binary and its disk, while the remaining SEDs are likely the result of other internal processes such as photoevaporation, grain growth, planet disk interactions. In addition, we detected four companions orbiting outside the area of the truncation radii and we propose that the IR excesses of these systems are due to a disk orbiting a secondary companion
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range $4-30$. We consider isothermal plus non-isothermal disc models that employ either the classical $beta$ prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with ${cal Q} gtrsim 15$, vortex decay occurs due to the vortex self-gravitational torque. For discs with $3lesssim {cal Q} lesssim 7$, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with $beta$ cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for $beta lesssim 0.1$, whereas it decays if $beta ge 1$. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio $chi sim 3-4$. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple $alpha$ disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. $lambdalesssim$ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has $alphalesssim 0.001$, ALMA can detect this disc when it accretes faster than $10^{-10} M_{odot}/yr$. ALMA can also detect the minimum mass sub-nebulae disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 10$^2$-10$^{3}$ years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا