Do you want to publish a course? Click here

H.E.S.S. limits on line-like dark matter signatures in the 100 GeV to 2 TeV energy range close to the Galactic Centre

264   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for dark matter line-like signals was performed in the vicinity of the Galactic Centre by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis was developed to improve the sensitivity to line-like signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% CL the presence of a 130 GeV line (at $l = -1.5^{circ}, b = 0^{circ}$ and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross-section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.



rate research

Read More

Gamma-ray line signatures can be expected in the very-high-energy (VHE; E_gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical gamma-ray sources that in most cases produce continuous spectra which span over several orders of magnitude in energy. Using data collected with the H.E.S.S. gamma-ray instrument, upper limits on line-like emission are obtained in the energy range between ~500 GeV and ~25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic gamma-ray line emission, flux limits of (2x10^-7 - 2x10^-5) m^-2 s^-1 sr^-1 and (1x10^-8 - 2x10^-6) m^-2 s^-1 sr^-1 are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section < sigma v >(chichi -> gammagamma) reach ~10^-27 cm^3 s^-1, based on the Einasto parametrization of the Galactic DM halo density profile.
The predictions of hadronic interaction models for cosmic-ray induced air showers contain inherent uncertainties due to limitations of available accelerator data and theoretical understanding in the required energy and rapidity regime. Differences between models are typically evaluated in the range appropriate for cosmic-ray air shower arrays ($10^{15}$-$10^{20}$ eV). However, accurate modelling of charged cosmic-ray measurements with ground based gamma-ray observatories is becoming more and more important. We assess the model predictions on the gross behaviour of measurable air shower parameters in the energy (0.1-100 TeV) and altitude ranges most appropriate for detection by ground-based gamma-ray observatories. We go on to investigate the particle distributions just after the first interaction point, to examine how differences in the micro-physics of the models may compound into differences in the gross air shower behaviour. Differences between the models above 1 TeV are typically less than 10%. However, we find the largest variation in particle densities at ground at the lowest energy tested (100 GeV), resulting from striking differences in the early stages of shower development.
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.
High-energy gamma rays are promising tools to constrain or reveal the nature of dark matter, in particular Weakly Interacting Massive Particles. Being well into its pre-construction phase, the Cherenkov Telescope Array (CTA) will soon probe the sky in the 20 GeV - 300 TeV energy range. Thanks to its improved energy and angular resolutions as well as significantly larger effective area when compared to the current generation of Cherenkov telescopes, CTA is expected to probe heavier dark matter, with unprecedented sensitivity, reaching the thermal annihilation cross-section at ~1 TeV. This talk will summarise the planned dark matter search strategies with CTA, focusing on the signal from the Galactic centre. As observed with the Fermi LAT at lower energies, this region is rather complex and CTA will be the first ground-based observatory sensitive to the large scale diffuse astrophysical emission from that region. We report on the collaboration effort to study the impact of such extended astrophysical backgrounds on the dark matter search, based on Fermi-LAT data in order to guide our observational strategies, taking into account various sources of systematic uncertainty.
We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTAs unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. Full likelihood tables complementing our analysis are provided here [ https://doi.org/10.5281/zenodo.4057987 ]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا