Do you want to publish a course? Click here

Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S

257   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma-ray line signatures can be expected in the very-high-energy (VHE; E_gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical gamma-ray sources that in most cases produce continuous spectra which span over several orders of magnitude in energy. Using data collected with the H.E.S.S. gamma-ray instrument, upper limits on line-like emission are obtained in the energy range between ~500 GeV and ~25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic gamma-ray line emission, flux limits of (2x10^-7 - 2x10^-5) m^-2 s^-1 sr^-1 and (1x10^-8 - 2x10^-6) m^-2 s^-1 sr^-1 are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section < sigma v >(chichi -> gammagamma) reach ~10^-27 cm^3 s^-1, based on the Einasto parametrization of the Galactic DM halo density profile.



rate research

Read More

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy $gamma$-rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of signal versus background. The analysis makes use of Galactic Center (GC) observations accumulated over ten years (2004 - 2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant $gamma$-ray excess above the background is found. We derive upper limits on the annihilation cross section $langlesigma vrangle$ for monoenergetic DM lines at the level of $sim4times10^{-28}$ cm$^{3}$s$^{-1}$ at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of six. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV - 70 TeV. Ground-based $gamma$-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two $gamma$-ray photons at the level expected from the thermal relic density for TeV DM particles.
The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using $gamma$-ray observations towards the inner 300 parsecs of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant $gamma$-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section $langle sigma vrangle$. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach $langle sigma vrangle$ values of $rm 6times10^{-26} cm^3s^{-1}$ in the $W^+W^-$ channel for a DM particle mass of 1.5 TeV, and $rm 2times10^{-26} cm^3s^{-1}$ in the $tau^+tau^-$ channel for 1 TeV mass. For the first time, ground-based $gamma$-ray observations have reached sufficient sensitivity to probe $langle sigma vrangle$ values expected from the thermal relic density for TeV DM particles.
Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for very-high-energy (VHE, $Egeq 100$ GeV) gamma-ray emission using H.E.S.S. observations carried out from a thorough selection of unidentified Fermi-LAT Objects (UFOs) as dark matter subhalo candidates. Provided that the dark matter mass is higher than a few hundred GeV, the emission of the UFOs can be well described by dark matter annihilation models. No significant VHE gamma-ray emission is detected in any UFO dataset nor in their combination. We, therefore, derive constraints on the product of the velocity-weighted annihilation cross-section $langle sigma vrangle$ by the $J$-factor on dark matter models describing the UFO emissions. Upper limits at 95% confidence level are derived on $langle sigma vrangle J$ in $W^+W^-$ and $tau^+tau^-$ annihilation channels for the TeV dark matter particles. Focusing on thermal WIMPs, strong constraints on the $J$-factors are obtained from H.E.S.S. observations. Adopting model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution function for Milky Way (MW)-sized galaxies, only $lesssim 0.3$ TeV mass dark matter models marginally allow to explain observed UFO emission.
Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of ~3.9x10-24 cm^3 s-1 at a 95% confidence level.
Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. The H.E.S.S. experiment has observed five of these systems for a total of about 130 hours. The data are re-analyzed here, and, in the absence of any detected signals, are interpreted in terms of limits on the DM annihilation cross section. Two scenarios are considered: i) DM annihilation into mono-energetic gamma-rays and ii) DM in the form of pure WIMP multiplets that, annihilating into all electroweak bosons, produce a distinctive gamma-ray spectral shape with a high-energy peak at the DM mass and a lower-energy continuum. For case i), upper limits at 95% confidence level of about $langle sigma v rangle lesssim 3 times 10^{-25}$ cm$^3$ s$^{-1}$ are obtained in the mass range of 400 GeV to 1 TeV. For case ii), the full spectral shape of the models is used and several excluded regions are identified, but the thermal masses of the candidates are not robustly ruled out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا