Do you want to publish a course? Click here

An active, asynchronous companion to a redback millisecond pulsar

124   0   0.0 ( 0 )
 Added by John Antoniadis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

PSR,J1723$-$2837 is a redback millisecond pulsar (MSP) with a low-mass companion in a 14.8,h orbit. The systems properties closely resemble those of transitional MSPs that alternate between spin-down and accretion-powered states. In this paper we report on long-term photometry of the 15.5,mag companion to the pulsar. We use our data to illustrate that the star experiences sporadic activity, which we attribute to starspots. We also find that the companion is not tidally locked and infer $P_{rm s}/P_{rm b}= 0.9974(7)$ for the ratio between the rotational and orbital periods. Finally, we place constraints on various parameters, including the irradiation efficiency and pulsar mass. We discuss similarities with other redback MSPs and conclude that starspots may provide the most likely explanation for the often seen irregular and asymmetric optical lightcurves.



rate research

Read More

PSR J2129-0429 is a redback eclipsing millisecond pulsar binary with an unusually long 15.2 hour orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean $m_R = 16.6$ mag), allowing us to construct the longest baseline photometric dataset available for such a system. We present ten years of archival and new photometry of the companion from LINEAR, CRTS, PTF, the Palomar 60-inch, and LCOGT. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200-inch indicates that the pulsar is massive: $1.74pm0.18 M_odot$. The G-type pulsar companion has mass $0.44pm0.04 M_odot$, one of the heaviest known redback companions. It is currently 95% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr$^{-1}$ secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical lightcurve shape. This behavior may indicate that the companion is cooling. Binary evolution calculations indicate that PSR J2129-0429 has an orbital period almost exactly at the bifurcation period between systems that converge into tighter orbits as black widows and redbacks and those that diverge into wider pulsar--white dwarf binaries. Its eventual fate may depend on whether it undergoes future episodes of mass transfer and increased irradiation.
Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 kms). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of 1.6 M_sun for the progenitor of the pulsar, which is too low for the quark-nova mechanism proposed by Jiang et al. (2015). Similarly, the scenario of Freire & Tauris (2014), in which a WD collapses onto a neutron star via an rotationally-delayed accretion-induced collapse, requires both a high-mass differentially rotating progenitor and a significant momentum kick at birth under our constraints. Contrarily, we find that eccentricity pumping via interaction with a transient circumbinary disk is consistent with all inferred properties. Finally, we report tentative evidence for pulsations which, if confirmed, would transform the star into an unprecedented laboratory for WD physics and stellar convection.
We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (delta r ~0.28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.
We present the first optical spectroscopy of five confirmed (or strong candidate) redback millisecond pulsar binaries, obtaining complete radial velocity curves for each companion star. The properties of these millisecond pulsar binaries with low-mass, hydrogen-rich companions are discussed in the context of the 14 confirmed and 10 candidate field redbacks. We find that the neutron stars in redbacks have a median mass of 1.78 +/- 0.09 M_sun with a dispersion of sigma = 0.21 +/- 0.09. Neutron stars with masses in excess of 2 M_sun are consistent with, but not firmly demanded by, current observations. Redback companions have median masses of 0.36 +/- 0.04 M_sun with a scatter of sigma = 0.15 +/- 0.04, and a tail possibly extending up to 0.7-0.9 M_sun. Candidate redbacks tend to have higher companion masses than confirmed redbacks, suggesting a possible selection bias against the detection of radio pulsations in these more massive candidate systems. The distribution of companion masses between redbacks and the less massive black widows continues to be strongly bimodal, which is an important constraint on evolutionary models for these systems. Among redbacks, the median efficiency of converting the pulsar spindown energy to gamma-ray luminosity is ~10%.
We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-LAT source 3FGLJ1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6-hour binary, and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 solar masses, and we have identified a $V sim 20$ variable optical counterpart in data from several surveys. The phasing of its $sim 1$~mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companions magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا