Do you want to publish a course? Click here

Spin Transport through the metallic antiferromagnet FeMn

211   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate spin transport through metallic antiferromagnets using measurements based on spin pumping combined with inverse spin Hall effects in Ni80Fe20/FeMn/W trilayers. The relatively large magnitude and opposite sign of spin Hall effects in W compared to FeMn enable an unambiguous detection of spin currents transmitted through the entire FeMn layer thickness. Using this approach we can detect two distinctively different spin transport regimes, which we associate with electronic and magnonic spin currents respectively. The latter can extend to relatively large distances (up to 9 nm) and is enhanced when the antiferromagnetic ordering temperature is close to the measurement temperature.



rate research

Read More

477 - Biqin Huang 2007
Efficient injection of spin-polarized electrons into the conduction band of silicon is limited by the formation of a silicide at the ferromagnetic metal (FM)/silicon interface. In the present work, this magnetically-dead silicide (where strong spin-scattering significantly reduces injected spin polarization) is eliminated by moving the FM in the spin injector from the tunnel junction base anode to the emitter cathode and away from the silicon surface. This results in over an order-of-magnitude increase in spin injection efficiency, from a previously-reported magnetocurrent ratio of ~2% to ~35% and an estimated spin polarization in Si from ~1% to at least ~15%. The injector tunnel-junction bias dependence of this spin transport signal is also measured, demonstrating the importance of low bias voltage to preserve high injected spin polarization.
Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust long-distance spin transport through an AFMI, in our case the gate-controlled, canted antiferromagnetic (CAF) state that appears at the charge neutrality point of graphene in the presence of an external magnetic field. Utilizing gate-controlled quantum Hall (QH) edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across a 5 micron-long, insulating channel only when it is biased into the nu=0 CAF state. Among possible transport mechanisms, spin superfluidity in an antiferromagnetic state gives the most consistent interpretation of the non-local signals dependence on magnetic field, temperature and filling factors. This work also demonstrates that graphene in the QH regime is a powerful model system for fundamental studies of antiferromagnetic, and in the case of a large in-plane field, ferromagnetic spintronics.
Spin wave dispersion in the metallic antiferromagnet Mn$_3$Pt was investigated just above the order-order transition temperature by using the inelastic neutron scattering technique. The spin wave dispersion at $T = 400$ K along [100], [110] and [111] directions was isotropic within the measurement accuracy. The dispersion was described by $({hbaromega})^2 = c^2q^2 + Delta^2$ with $c = 190$ meV {AA} and $Delta = 3.3$ meV. Compared with the dispersion at $T = 419$ K previously reported, the result demonstrates a large reduction of the stiffness constant $c$ with increasing temperature. This is similar to that observed in the metallic antiferromagnet FePt$_3$, and is an indication of the itinerancy of the magnetic moments.
252 - Yanjun Xu , Yumeng Yang , Kui Yao 2016
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.
We present the analysis of the spin signals obtained in NiFe based metallic lateral spin valves. We exploit the spin dependent diffusive equations in both the conventional 1D analytic modeling as well as in 3D Finite Element Method simulations. Both approaches are used for extracting the spin diffusion length $l_{sf}^{N}$ and the effective spin polarization $P_{eff}$ in Py/Al, Py/Cu and Py/Au based lateral nano-structures at both $300,K$ and $77,K$. Both the analytic modeling and 3D Finite Element Method simulations give consistent results. Combination of both models provides a powerful tool for reliable spin transport characterization in all metallic spin valves and gives an insight into the spin/charge current and spin accumulations 3D distributions in these devices. We provide the necessary ingredients to develop the 3D finite element modeling of diffusive spin transport.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا