No Arabic abstract
The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO$_3$ on ferroelectric polarization and switching mechanism is investigated by means of density-functional-theory (DFT) based calculations and the Berry phase approach. Our results show that both the titanium Ti$_mathrm{Sr}^{bullet bullet}$ and strontium Sr$_mathrm{Ti}^{}$ antisite defects induce ferroelectric polarization in SrTiO$_3$, with the Ti$_mathrm{Sr}^{bullet bullet}$ defect causing a more pronounced spontaneous polarization and higher activation barriers of polarization reversal than Sr$_mathrm{Ti}^{}$. The presence of oxygen vacancies bound to the antisite defects can either enhance or diminish polarization depending on the configuration of the defect pair, but it always leads to larger activation barriers of polarization switching as compared to the antisite defects with no oxygen vacancies. We also show that the magnitude of spontaneous polarization in SrTiO$_3$ can be tuned by controlling the degree of Sr/Ti nonstroichiometry. Other intrinsic point defects such as Frenkel defect pairs and electron small polarons also contribute to the emergence of ferroelectric polarization in SrTiO$_{3}$.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
We study a model SrTiO$_3$ interface in which conduction $t_{2g}$ electrons couple to the ferroelectric (FE) phonon mode. We treat the FE mode within a self-consistent phonon theory that captures its quantum critical behavior, and show that proximity to the quantum critical point leads to universal tails in the electron density of the form $n(z) sim (lambda+z)^{-2}$, where $lambda sim T^{2-d/mathfrak{z}}$, with $d=3$ the dimensionality and $mathfrak{z}=1$ the dynamical critical exponent. Implications for the metal-insulator transition at low electron density are discussed.
Oxygen vacancies have been identified to play an important role in accelerating grain growth in polycrystalline perovskite-oxide ceramics. In order to advance the fundamental understanding of growth mechanisms at the atomic scale, classical atomistic simulations were carried out to investigate the atomistic structures and oxygen vacancy formation energies at grain boundaries in the prototypical perovskite-oxide material SrTiO$_3$. In this work, we focus on two symmetric tilt grain boundaries, namely $Sigma$5(310)[001] and $Sigma$5(210)[001]. A one-dimensional continuum model is adapted to determine the electrostatic potential induced by charged lattice planes in atomistic structure models containing grain boundaries and point defects. By means of this model, electrostatic artifacts, which are inherent to supercell models with periodic or open boundary conditions, can be taken into account and corrected properly. We report calculated formation energies of oxygen vacancies on all the oxygen sites across boundaries between two misoriented grains, and we analyze and discuss the formation-energy values with respect to local charge densities at the vacant sites.
The control of spin-dependent properties by voltage, not involving magnetization switching, has significant advantages for low-power spintronics. Here, we predict that the interfacial crystal Hall effect (ICHE) can serve for this purpose. We show that the ICHE can occur in heterostructures composed of compensated antiferromagnetic metals and non-magnetic insulators due to reduced symmetry at the interface, and it can be made reversible if the antiferromagnet is layered symmetrically between two identical ferroelectric layers. We explicitly demonstrate this phenomenon using density functional theory calculations for three material systems: MnBi$_{2}$Te$_{4}$/GeI$_{2}$ and topological In$_{2}$Te$_{3}$/MnBi$_{2}$Te$_{4}$/In$_{2}$Te$_{3}$ van der Waals heterostructures, and GeTe/Ru$_{2}$MnGe/GeTe heterostructure composed of three-dimensional materials. We show that all three systems reveal a sizable ICHE, while the latter two exhibit a quantum ICHE and ICHE, respectively, reversible with ferroelectric polarization. Our proposal opens an alternative direction for voltage controlled spintronics and offers not yet explored possibilities for functional devices by heterostructure design.
Polar chiral structures have recently attracted much interest within the scientific community, as they pave the way towards innovative device concepts similar to the developments achieved in nanomagnetism. Despite the growing interest, many fundamental questions related to the mechanisms controlling the appearance and stability of ferroelectric topological structures remain open. In this context, ferroelectric nanoparticles provide a flexible playground for such investigations. Here, we present a theoretical study of ferroelectric polar textures in a cylindrical core-shell nanoparticle. The calculations reveal a chiral polarization structure containing two oppositely oriented diffuse axial domains located near the cylinder ends, separated by a region with a zero-axial polarization. We name this polarization configuration flexon to underline the flexoelectric nature of its axial polarization. Analytical calculations and numerical simulation results show that the flexons chirality can be switched by reversing the sign of the flexoelectric coefficient. Furthermore, the anisotropy of the flexoelectric coupling is found to critically influence the polarization texture and domain morphology. The flexon rounded shape, combined with its distinct chiral properties and the localization nature near the surface, are reminiscent of Chiral Bobber structures in magnetism. In the azimuthal plane, the flexon displays the polarization state of a vortex with an axially polarized core region, i.e., a meron. The flexoelectric effect, which couples the electric polarization and elastic strain gradients, plays a determining role in the stabilization of these chiral states. We discuss similarities between this interaction and the recently predicted ferroelectric Dyzaloshinskii-Moriya interaction leading to chiral polarization states.