Do you want to publish a course? Click here

Prospecting for chemical tags among open clusters

70   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determinations of the chemical composition of red giants in a large sample of open clusters show that the abundances of the heavy elements La, Ce, Nd and Sm but not so obviously Y and Eu vary from one cluster to another across a sample all having about the solar metallicity. For La, Ce, Nd and Sm the amplitudes of the variations at solar metallicity scale approximately with the main s-process contribution to solar system material. Consideration of published abundances of field stars suggest that such a spread in heavy element abundances is present for the thin and thick disk stars of different metallicity. This new result provides an opportunity to chemically tag stars by their heavy elements and to reconstruct dissolved open clusters from the field star population.



rate research

Read More

Galactic open clusters have been long recognized as one of the best tools to investigate the chemical content of Galactic disk and its time evolution. In the last decade, many efforts have been directed to chemically characterize the old and intermediate age population; surprisingly, the chemical content of the younger and close counterpart remains largely undetermined. In this paper we present the abundance analysis of a sample of 15 G/K members of the young pre-main sequence clusters IC 2602 and IC 2391. Along with IC 4665, these are the first pre-main sequence clusters for which a detailed abundance determination has been carried out so far. We analyzed high-resolution, high S/N spectra acquired with different instruments (UVES and CASPEC at ESO, and the echelle spectrograph at CTIO), using MOOG and equivalent width measurements. Along with metallicity ([Fe/H]), we measured NaI, SiI, CaI, TiI and TiII, and NiI abundances. Stars cooler than ~5500 show lower CaI, TiI, and NaI than warmer stars. By determining TiII abundances, we show that, at least for Ti, this effect is due to NLTE and over-ionization. We find average metallicities [Fe/H] =0$pm 0.01$ and [Fe/H]=0.01$pm$ 0.02 for IC 2602 and IC 2391, respectively. All the [X/Fe] ratios show a solar composition; the accurate measurements allow us to exclude the presence of star-to-star scatter among the members.
We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R$simeq$45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph (IGRINS), providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), $alpha$ (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the $H$ band, and C abundances were determined mainly from CO molecular lines in the K band. High excitation ion{C}{i} lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2-0) and (3$-$1) $^{12}$CO and (2-0) $^{13}$CO lines near 23440 AA and (3-1) $^{13}$CO lines at about 23730 AA. The CNO abundances and $^{12}$C/$^{13}$C ratios are all consistent with our giants having completed first dredge-up envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new color-magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the program stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the program stars are members of the helium-burning red clump in this cluster.
105 - M. Ness , H-W. Rix , David W. Hogg 2017
We explore to which extent stars within Galactic disk open clusters resemble each other in the high-dimensional space of their photospheric element abundances, and contrast this with pairs of field stars. Our analysis is based on abundances for 20 elements, homogeneously derived from APOGEE spectra (with carefully quantified uncertainties, with a median value of $sim 0.03$ dex). We consider 90 red giant stars in seven open clusters and find that most stars within a cluster have abundances in most elements that are indistinguishable (in a $chi^2$-sense) from those of the other members, as expected for stellar birth siblings. An analogous analysis among pairs of $>1000$ field stars shows that highly significant abundance differences in the 20-dimensional space can be established for the vast majority of these pairs, and that the APOGEE-based abundance measurements have high discriminating power. However, pairs of field stars whose abundances are indistinguishable even at 0.03~dex precision exist: $sim 0.3$ percent of all field star pairs, and $sim 1.0$ percent of field star pairs at the same (solar) metallicity [Fe/H] = $0 pm 0.02$. Most of these pairs are presumably not birth siblings from the same cluster, but rather doppelganger. Our analysis implies that chemical tagging in the strict sense, identifying birth siblings for typical disk stars through their abundance similarity alone, will not work with such data. However, our approach shows that abundances have extremely valuable information for probabilistic chemo-orbital modeling and combined with velocities, we have identified new cluster members from the field.
Hot corino chemistry and warm carbon chain chemistry (WCCC) are driven by gas-grain interactions in star-forming cores: radical-radical recombination reactions to form complex organic molecules (COMs) in the ice mantle, sublimation of CH$_4$ and COMs, and their subsequent gas-phase reactions. These chemical features are expected to depend on the composition of ice mantle which is set in the prestellar phase. We calculated the gas-grain chemical reaction network considering a layered ice-mantle structure in star-forming cores, to investigate how the hot corino chemistry and WCCC depend on the physical condition of the static phase before the onset of gravitational collapse. We found that WCCC becomes more active, if the temperature is lower, or the visual extinction is lower in the static phase, or the static phase is longer. Dependence of hot corino chemistry on the static-phase condition is more complex. While CH$_3$OH is less abundant in the models with warmer static phase, some COMs are formed efficiently in those warm models, since there are various formation paths of COMs. If the visual extinction is lower, photolysis makes COMs less abundant in the static phase. Once the collapse starts and visual extinction increases, however, COMs can be formed efficiently. Duration of the static phase does not largely affect COM abundances. Chemical diversity between prototypical hot corinos and hybrid sources, in which both COMs and carbon chains are reasonably abundant, can be explained by the variation of prestellar conditions. Deficiency of gaseous COMs in prototypical WCCC sources is, however, hard to reproduce within our models.
$Context$. Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for a better understanding of the disc properties. $Aims$. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. $Methods$. We make use of the membership determination based on the precise Gaia astrometry and photometry. We apply anautomated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. $Results$. We derive parameters such as age, distance modulus and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا