Do you want to publish a course? Click here

Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. II. NGC 752

103   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R$simeq$45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph (IGRINS), providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), $alpha$ (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the $H$ band, and C abundances were determined mainly from CO molecular lines in the K band. High excitation ion{C}{i} lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2-0) and (3$-$1) $^{12}$CO and (2-0) $^{13}$CO lines near 23440 AA and (3-1) $^{13}$CO lines at about 23730 AA. The CNO abundances and $^{12}$C/$^{13}$C ratios are all consistent with our giants having completed first dredge-up envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new color-magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the program stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the program stars are members of the helium-burning red clump in this cluster.



rate research

Read More

121 - R. Carrera 2015
Context: Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R~8000) in the infrared region Ca II triplet lines (~8500 AA) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5~m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca II lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain <V_r> = 48.6+/-3.4, -58.4+/-6.8, 26.0+/-4.3 and -65.3+/-3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603 and NGC 7245, respectively. We found [Fe/H] =-0.25+/-0.14 and -0.15+/-0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has a low metallicity, [Fe/H] =-0.42+/-0.13, similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived a high metallicity ([Fe/H] =+0.43+/-0.15) for NGC 6603, which places this system among the most metal rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members.
Precision uvbyCaHbeta photometry of the nearby old open cluster, NGC 752, is presented. The mosaic of CCD fields covers an area ~42 on a side with internal precision at the 0.005 to 0.010 mag level for the majority of stars down to V~15. The CCD photometry is tied to the standard system using an extensive set of published photoelectric observations adopted as secondary standards within the cluster. Multicolor indices are used to eliminate as nonmembers a large fraction of the low probability proper-motion members near the faint end of the main sequence, while identifying 24 potential dwarf members between V=15.0 and 16.5, eight of which have been noted before from Vilnius photometry. From 68 highly probable F dwarf members, we derive a reddening estimate of E(b-y)= 0.025 +/- 0.003 (E(B-V) = 0.034 +/- 0.004), where the error includes the internal photometric uncertainty and the systematic error arising from the choice of the standard (b-y), Hbeta relation. With reddening fixed, [Fe/H] is derived from the F dwarf members using both m_1 and hk, leading to [Fe/H] = -0.071 +/-0.014 (sem) and -0.017 +/- 0.008 (sem), respectively. Taking the internal precision and possible systematics in the standard relations into account, [Fe/H] for NGC 752 becomes -0.03 +/-0.02. With the reddening and metallicity defined, we use the Victoria-Regina isochrones on the Stromgren system and find an excellent match for (m-M) = 8.30 +/- 0.05 and an age of 1.45 +/- 0.05 Gyr at the appropriate metallicity.
496 - R. Carrera (1 , 2 , 3 2011
Context. Open clusters are ideal test particles to study the chemical evolution of the Galactic disc. However the existing high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient at the moment. Aims. To increase the number of Galactic open clusters with high quality abundance determinations, and to gather all the literature determinations published so far. Methods. Using high-resolution (R~30000), high-quality (S/N$>60 per pixel), we obtained spectra for twelve stars in four open clusters with the fiber spectrograph FOCES, at the 2.2 Calar Alto Telescope in Spain. We use the classical equivalent widths analysis to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, Y. Oxygen abundances have been derived through spectral synthesis of the 6300 A forbidden line. Results. We provide the first determination of abundance ratios other than Fe for NGC 752 giants, and ratios in agreement with the literature for the Hyades, Praesepe and Be 32. We use a compilation of literature data to study Galactic trends of [Fe/H] and [alpha/Fe] with Galactocentric radius, age, and height above the Galactic plane. We find no significant trends, but some indication for a flattening of [Fe/H] at large Rgc, and for younger ages in the inner disc. We also found a possible decrease of [Fe/H] with |z| in the outer disc, and a weak increase of [alpha/Fe] with Rgc.
We have derived elemental abundances of three field red horizontal branch stars using high-resolution (R$simeq$ 45,000), high signal-to-noise ratio (S/N $gtrsim$ 200) $H$ and $K$ band spectra obtained with the Immersion Grating Infrared Spectrograph (IGRINS). We have determined the abundances of 21 elements including $alpha$ (Mg, Si, Ca, S), odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Co, Ni), neutron-capture (Ce, Nd, Yb), and CNO group elements. S, P and K are determined for the first time in these stars. $H$ and $K$ band spectra provide a substantial number of S I lines, which potentially can lead to a more robust exploration of the role of sulfur in the cosmochemical evolution of the Galaxy. We have also derived $^{12}$C/$^{13}$C ratios from synthetic spectra of the first overtone (2$-$0) and (3$-$1) $^{12}$CO and (2$-$0) $^{13}$CO lines near 23440 AA and $^{13}$CO (3$-$1) lines at about 23730 AA. Comparison of our results with the ones obtained from the optical region suggests that the IGRINS high-resolution $H$ and $K$ band spectra offer more internally self-consistent atomic lines of the same species for several elements, especially the $alpha$ elements. This in turn provides more reliable abundances for the elements with analytical difficulties in the optical spectral range.
Extremely metal-poor stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2m telescope to refine their chemical composition. We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li)=1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] < -5.2 ). We were also able to measure Li in three stars at [Fe/H]~ -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low alpha-to-iron ratios. The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H]~ -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in alpha-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low alpha-to-iron ratios is supported by our observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا