Do you want to publish a course? Click here

Finite element analysis of ion-implanted diamond surface swelling

237   0   0.0 ( 0 )
 Added by Paolo Olivero
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present experimental results and numerical Finite Element analysis to describe surface swelling due to the creation of buried graphite-like inclusions in diamond substrates subjected to MeV ion implantation. Numerical predictions are compared to experimental data for MeV proton and helium implantations, performed with scanning ion microbeams. Swelling values are measured with white light interferometric profilometry in both cases. Simulations are based on a model which accounts for the through-the-thickness variation of mechanical parameters in the material, as a function of ion type, fluence and energy. Surface deformation profiles and internal stress distributions are analyzed and numerical results are seen to adequately fit experimental data. Results allow us to draw conclusions on structural damage mechanisms in diamond for different MeV ion implantations.



rate research

Read More

Ion implantation is widely used as a surrogate for neutron irradiation in the investigation of radiation damage on the properties of materials. Due to the small depth of damage, micromechanical methods must be used to extract material properties. In this work, nanoindentation has been applied to ion irradiated silicon carbide to extract radiation-induced hardening. Residual stress is evaluated using HR-EBSD, AFM swelling measurements, and a novel microcantilever relaxation technique coupled with finite element modelling. Large compressive residual stresses of several GPa are found in the irradiated material, which contribute to the significant hardening observed in nanoindentation measurements. The origin of these residual stresses and the associated hardening is the unirradiated substrate which constrains radiation swelling. Comparisons with other materials susceptible to irradiation swelling show that this effect should not be neglected in studying the effects of ion irradiation damage on mechanical properties. This constraint may also be influencing fundamental radiation defects. This has significant implications for the suitability of ion implantation as a surrogate for neutron irradiations. These results demonstrate the significance of swelling-induced residual stresses in nuclear reactor components, and the impact on structural integrity of reactor components.
Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micro- and nano-electromechanical systems. The use of energetic ions is a powerful and versatile tool to fabricate three-dimensional micro-mechanical structures. In this context, it is of paramount importance to have an accurate knowledge of the effects of ion-induced structural damage on the mechanical properties of this material, firstly to predict potential undesired side-effects of the ion implantation process, and possibly to tailor the desired mechanical properties of the fabricated devices. We present an Atomic Force Microscopy (AFM) characterization of free-standing cantilevers in single-crystal diamond obtained by a FIB-assisted lift-off technique, which allows a determination of the Youngs modulus of the diamond crystal after the MeV ion irradiation process concurrent to the fabrication of the microstructures, and subsequent thermal annealing. The AFM measurements were performed with the beam-bending technique and show that the thermal annealing process allows for an effective recovery of the mechanical properties of the pristine crystal.
We demonstrate the feasibility of fabricating light-waveguiding microstructures in bulk single-crystal diamond by means of direct ion implantation with a scanning microbeam, resulting in the modulation of the refractive index of the ion-beam damaged crystal. Direct evidence of waveguiding through such buried microchannels is obtained with a phase-shift micro-interferometric method allowing the study of the multi-modal structure of the propagating electromagnetic field. The possibility of defining optical and photonic structures by direct ion writing opens a range of new possibilities in the design of quantum-optical devices in bulk single crystal diamond.
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1%Re alloy after implantation with 3110 appm of helium. A fraction of a percent observed lattice expansion gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale elasticity, molecular dynamics, and density functional theory model is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Molecular dynamics simulations confirm the elasticity model for swelling. Elastic properties of the implanted surface layer also change due to defects. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.
In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 {deg}C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 {deg}C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا