We measured the isotope shift in the $^2$S$_{1/2}$-$^2$P$_{3/2}$ (D2) transition in singly-ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to resolve the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the $^2$S$_{1/2}$-$^2$P$_{1/2}$ (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.
Ab initio calculations of QED radiative corrections to the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure transition energy are performed for selected F-like ions. These calculations are nonperturbative in $alpha Z$ and include all first-order and many-electron second-order effects in $alpha$. When compared to approximate QED computations, a notable discrepancy is found especially for F-like uranium for which the predicted self-energy contributions even differ in sign. Moreover, all deviations between theory and experiment for the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure energies of F-like ions, reported recently by Li et al., Phys. Rev. A 98, 020502(R) (2018), are resolved if their highly accurate, non-QED fine-structure values are combined with the QED corrections ab initially evaluated here.
The zero crossing of the dynamic differential scalar polarizability of the $S_{1/2}-D_{5/2}$ clock transition in $^{138}$Ba$^+$ has been determined to be $459.1614(28),$THz. Together with previously determined matrix elements and branching ratios, this tightly constrains the dynamic differential scalar polarizability of the clock transition over a large wavelength range ($gtrsim 700,$nm). In particular it allows an estimate of the blackbody radiation shift of the clock transition at room temperature.
The workhorse of atomic physics, quantum electrodynamics, is one of the best-tested theories in physics. However recent discrepancies have shed doubt on its accuracy for complex atomic systems. To facilitate the development of the theory further we aim to measure transition dipole matrix elements of metastable helium (He*) (the ideal 3 body test-bed) to the highest accuracy thus far. We have undertaken a measurement of the `tune-out wavelength which occurs when the contributions to the dynamic polarizability from all atomic transitions sum to zero; thus illuminating an atom with this wavelength of light then produces no net energy shift. This provides a strict constraint on the transition dipole matrix elements without the complication and inaccuracy of other methods. Using a novel atom-laser based technique we have made the first measurement of the tune-out wavelength in metastable helium between the $3^{3}P_{1,2,3}$ and $2^{3}P_{1,2,3}$ states at 413.07(2) nm which compares well with the predicted valuecite{Mitroy2013} of 413.02(9) nm. We have additionally developed many of the methods necessary to improve this measurement to the 100 fm level of accuracy where it will form the most accurate determination of transition rate information ever made in He* and provide a stringent test for atomic QED simulations. We believe this measurement to be one of the most sensitive ever made of an optical dipole potential, able to detect changes in potentials of $sim$200 pK and is widely applicable to other species and areas of atom optics.
Measurement of the branching ratios for $6P_{1/2}$ decays to $6S_{1/2}$ and $5D_{3/2}$ in $^{138}$Ba$^+$ are reported with the decay probability from $6P_{1/2}$ to $5D_{3/2}$ measured to be $p=0.268177pm(37)_mathrm{stat}-(20)_mathrm{sys}$. This result differs from a recent report by $12sigma$. A detailed account of systematics is given and the likely source of the discrepancy is identified. The new value of the branching ratio is combined with a previous experimental results to give a new estimate of $tau=7.855(10),mathrm{ns}$ for the $6P_{1/2}$ lifetime. In addition, ratios of matrix elements calculated from theory are combined with experimental results to provide improved theoretical estimates of the $6P_{3/2}$ lifetime and the associated matrix elements.
Fully relativistic calculations have been performed for two multiplets, $3s3p^2;^4P$ and $3s3p4s;^4P^o$, in Al I. Wave functions were obtained for all levels of these multiplets using the GRASP programs. Reported are the E1 transitions rates for all transitions between levels of these multiplets. Transition energies and transition rates are compared with observed values and other theory. Our calculated transition rates are smaller by about 10% than observed rates, reducing a large discrepancy between earlier calculations and experiment.
C. Shi
,F. Gebert
,C. Gorges
.
(2016)
.
"Unexpectedly large difference of the electron density at the nucleus in the 4p $^2$P$_{1/2,3/2}$ fine-structure doublet of Ca$^+$"
.
Piet O. Schmidt
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا