No Arabic abstract
We performed an angle-resolved photoemission spectroscopy study of BaMn$_2$As$_2$ and BaMn$_2$Sb$_2$, which are isostructural to the parent compound BaFe$_2$As$_2$ of the 122 family of ferropnictide superconductors. We show the existence of a strongly $k_z$-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half-filling of the electronic 3$d$ shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Our photon energy dependent study provides evidence for Mn-pnictide hybridization, which may play a role in tuning the electronic correlations in these compounds.
A very large negative magnetoresistance (LNMR) is observed in the insulating regime of the antiferromagnet BaMn$_2$Bi$_2$ when a magnetic field is applied perpendicular to the direction of the sublattice magnetization. High perpendicular magnetic field eventually suppresses the insulating behavior and allows BaMn$_2$Bi$_2$ to re-enter a metallic state. This effect is seemingly unrelated to any field induced magnetic phase transition, as measurements of magnetic susceptibility and specific heat did not find any anomaly as a function of magnetic fields at temperatures above $2,mathrm{K}$. The LNMR appears in both current-in-plane and current-out-of-plane settings, and Hall effects suggest that its origin lies in an extreme sensitivity of conduction processes of holelike carriers to the infinitesimal field-induced canting of the sublattice magnetization. The LNMR-induced metallic state may thus be associated with the breaking of the antiferromagnetic parity-time symmetry by perpendicular magnetic fields and/or the intricate multi-orbital electronic structure of BaMn$_2$Bi$_2$.
High-resolution laser-based angle-resolved photoemission measurements have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) and Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (Bi2201) superconductors. Unexpected hybridization between the main band and the superstructure band in Bi2212 is clearly revealed. In the momentum space where one main Fermi surface intersects with one superstructure Fermi surface, four bands are observed instead of two. The hybridization exists in both superconducting state and normal state, and in Bi2212 samples with different doping levels. Such a hybridization is not observed in Bi2201. This phenomenon can be understood by considering the bilayer splitting in Bi2212, the selective hybridization of two bands with peculiar combinations, and the altered matrix element effects of the hybridized bands. These observations provide strong evidence on the origin of the superstructure band which is intrinsic to the CuO$_2$ planes. Therefore, understanding physical properties and superconductivity mechanism in Bi2212 should consider the complete Fermi surface topology which involves the main bands, the superstructure bands and their interactions.
The multiband nature of iron-pnictide superconductors is one of the keys to the understanding of their intriguing behavior. The electronic and magnetic properties heavily rely on the multiband interactions between different electron and hole pockets near the Fermi level. At the fundamental level, though many theoretical models were constructed on the basis of the so-called 1-Fe Brillouin zone (BZ) with an emphasis of the basic square lattice of iron atoms, most electronic structure measurements were interpreted in the 2-Fe BZ. Whether the 1-Fe BZ is valid in a real system is still an open question. Using angle-resolved photoemission spectroscopy (ARPES), here we show in an extremely hole-doped iron-pnictide superconductor CsFe$_2$As$_2$ that the distribution of electronic spectral weight follows the 1-Fe BZ, and that the emerging band structure bears some features qualitatively different from theoretical band structures of the 1-Fe BZ. Our analysis suggests that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the 1-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the 1-Fe BZ.
We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ ($T_c = 15$ K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. More precisely, we respectively observed 5.7 meV and 4.5 meV superconducting gaps on the inner and outer $Gamma$-centered hole Fermi surface pockets, whereas a 4.8 meV gap is recorded on the M-centered electron Fermi surface pockets. Our results are consistent with the $J_1-J_2$ model with a dominant antiferromagnetic exchange interaction between the next-nearest Fe neighbors.
High resolution angle-resolved photoemission measurements have been carried out on (Sr,K)Fe$_2$As$_2$ superconductor (Tc=21 K). Three hole-like Fermi surface sheets are clearly resolved for the first time around the Gamma point. The overall electronic structure shows significant difference from the band structure calculations. Qualitative agreement between the measured and calculated band structure is realized by assuming a chemical potential shift of -0.2 eV. The obvious band renormalization suggests the importance of electron correlation in understanding the electronic structure of the Fe-based compounds.